
CS545—Floating Base
Control
l  Operational Space Control

§  A theoretically very clean approach to creating task space controllers

l  Floating Base Control
§  How to deal with underactuated robots
§  Derived largely from operational space control
§  How it is used in the NAO simulator

Balancing Robots are
Floating Base Systems

Operational Space Control
l  Start with rigid body dynamics

l  The operational space coordinates (e.g., endeffector) are
given through kinematics and differential kinematics

 B!!q+C+ g = τ

x = f q()
!x = J !q
!!x = J!!q+ !J !q

Operational Space Control
l  Derive the operational space dynamics

B!!q+C+ g = τ
JB−1 B!!q+C+ g() = JB−1τ

J!!q+ JB−1 C+ g() = JB−1τ
!!x + JB−1C− !J !q+ JB−1g = JB−1JTF

JB−1JT()−1
!!x + JB−1JT()−1

JB−1C− !J !q() + JB−1JT()−1
JB−1g = F

B!!x +C+ g = F : Opertional space dynamics

B = JB−1JT()−1
: Opertional space inertia matrix

C = JB−1JT()−1
JB−1C− !J !q() : Opertional corriolis/centripedal forces

g = JB−1JT()−1
JB−1g : Opertional space gravity forces

Operational Space Control
l  Operational Space Control Law

Assume a desired operatational space trajectory:
!!xref = !!xd +Kd !xd − !x() +K p xd − x()
such that the appropriate force to realize this trajectory is:
F = B!!xref +C+ g
convert to joint space:
τ = JTF

τ = BB−1JT B!!xref +C+ g()
τ = BJ !!xref − !J !q+ JB

−1 C+ g()()
Add null space forces by:

τ = BJ !!xref − !J !q+ JB
−1 C+ g()() + I− JT J()τ null

J = B−1JT JB−1JT()-1
 : inertia weighted pseudo inverse

Floating Base Control
l  Treat Robot as a “Space Robot”

l  If the robot is in contact with the world, add constraint
forces:

!B !""q+ !C+ !g = STτ
where

S = In 06⎡⎣ ⎤⎦ : selector matrix, like operational space Jacobian

!q =
q
xB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

!B !""q+ !C+ !g = STτ + !Jc
T fext

!Jc !"q = 0

A Possible Floating Base
Control Law
l  Write the joint space dynamics from operational space

control derivations:

l  This is essentially an inverse dynamics control law, but it
requires reliable force measurement at the constraint
points

S !B−1ST()""q+ ST !C+ !g − Jc

T fext() = τ

A Better Floating Base
Control Law
l  Decompose the constraint matrix by a QR

decomposition:

l  This control does not require knowledge of the external
forces, and this is what is implemented for the NAO

Jc
T =Q R

0
⎡

⎣
⎢

⎤

⎦
⎥

Q is orthonormal QTQ =QQT = I
R is upper triangular of rank k (k is the number of constraints)

With some algebra, a control law becomes:

τ = SuQ
TST()#

SuQ
T !B !""qref + !C+ !g()

Su = 0(n+6−k)×k I n+6−k()× n+6−k()
⎡
⎣⎢

⎤
⎦⎥

Theory of COG Inverse
Kinematics

COG: xcog =
1

mi
i=1

n

∑
mixi,cog

i=1

n

∑

COG Jacobian: Jcog =
∂xcog
∂θ

= 1

mi
i=1

n

∑
mi

∂xi,cog
∂θi=1

n

∑

Floating Base COG Jacobian: Jcog, float = Jcog Jbase⎡
⎣

⎤
⎦

Constraints from standing on 2 feet: J feet , float

θ
xbase
ωbase

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0 (no slipping)

Null Space Projection for Constraints: Nc = I− J#
feet , floatJ feet , float()

Constraint COG Jacobian: Jcog,const = JcogNc

Inverse Kinematics with
Constraint COG Jacobian
l  Given: Desired trajectory of COG

l  Reference COG velocity

l  IK Solution

 xcog,des , xcog,des

xcog,ref = kp xcog,des − xcog() + xcog,des

θdes

xbase,des

ωbase,des

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= J#
cog,const xcog,ref θdes t +1() = θdes t()Δt + θdes t()

Implentation In SL
l  balance_task.cpp is the skeleton to use
l  All important variables are pre-computed and

commented

