
CS545—Floating Base 
Control 
l  Operational Space Control 

§  A theoretically very clean approach to creating task space controllers 

l  Floating Base Control 
§  How to deal with underactuated robots 
§  Derived largely from operational space control 
§  How it is used in the NAO simulator 

 



Balancing Robots are 
Floating Base Systems 



Operational Space Control 
l  Start with rigid body dynamics 

l  The operational space coordinates (e.g., endeffector) are 
given through kinematics and differential kinematics 

 B!!q+C+ g = τ

 

x = f q( )
!x = J !q
!!x = J!!q+ !J !q



Operational Space Control 
l  Derive the operational space dynamics 

 

B!!q+C+ g = τ
JB−1 B!!q+C+ g( ) = JB−1τ

J!!q+ JB−1 C+ g( ) = JB−1τ
!!x + JB−1C− !J !q+ JB−1g = JB−1JTF

JB−1JT( )−1
!!x + JB−1JT( )−1

JB−1C− !J !q( ) + JB−1JT( )−1
JB−1g = F

B!!x +C+ g = F :  Opertional space dynamics

B = JB−1JT( )−1
:  Opertional space inertia matrix

C = JB−1JT( )−1
JB−1C− !J !q( ) :  Opertional corriolis/centripedal forces

g = JB−1JT( )−1
JB−1g :  Opertional space gravity forces



Operational Space Control 
l  Operational Space Control Law 

 

Assume a desired operatational space trajectory:
!!xref = !!xd +Kd !xd − !x( ) +K p xd − x( )
such that the appropriate force to realize this trajectory is:
F = B!!xref +C+ g
convert to joint space:
τ = JTF

τ = BB−1JT B!!xref +C+ g( )
τ = BJ !!xref − !J !q+ JB

−1 C+ g( )( )
Add null space forces by:

τ = BJ !!xref − !J !q+ JB
−1 C+ g( )( ) + I− JT J( )τ null

J = B−1JT JB−1JT( )-1
 : inertia weighted pseudo inverse



Floating Base Control 
l  Treat Robot as a “Space Robot” 

l  If the robot is in contact with the world, add constraint 
forces: 

 

!B !""q+ !C+ !g = STτ
where

S = In 06⎡⎣ ⎤⎦  : selector matrix, like operational space Jacobian

!q =
q
xB

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

!B !""q+ !C+ !g = STτ + !Jc
T fext

!Jc !"q = 0



A Possible Floating Base 
Control Law 
l  Write the joint space dynamics from operational space 

control derivations: 

l  This is essentially an inverse dynamics control law, but it 
requires reliable force measurement at the constraint 
points 

 
S !B−1ST( )""q+ ST !C+ !g − Jc

T fext( ) = τ



A Better Floating Base 
Control Law 
l  Decompose the constraint matrix by a QR 

decomposition: 

l  This control does not require knowledge of the external 
forces, and this is what is implemented for the NAO 

 

Jc
T =Q R

0
⎡

⎣
⎢

⎤

⎦
⎥

Q is orthonormal QTQ =QQT = I
R is upper triangular of rank k (k is the number of constraints)

With some algebra, a control law becomes:

τ = SuQ
TST( )#

SuQ
T !B !""qref + !C+ !g( )

Su = 0(n+6−k )×k I n+6−k( )× n+6−k( )
⎡
⎣⎢

⎤
⎦⎥



Theory of COG Inverse 
Kinematics 

 

COG: xcog =
1

mi
i=1

n

∑
mixi,cog

i=1

n

∑

COG Jacobian: Jcog =
∂xcog
∂θ

= 1

mi
i=1

n

∑
mi

∂xi,cog
∂θi=1

n

∑

Floating Base COG Jacobian: Jcog, float = Jcog Jbase⎡
⎣

⎤
⎦

Constraints from standing on 2 feet: J feet , float

θ
xbase
ωbase

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0       (no slipping)

Null Space Projection for Constraints: Nc = I− J#
feet , floatJ feet , float( )

Constraint COG Jacobian: Jcog,const = JcogNc



Inverse Kinematics with 
Constraint COG Jacobian 
l  Given: Desired trajectory of COG 

l  Reference COG velocity 

l  IK Solution 

 xcog,des , xcog,des

 
xcog,ref = kp xcog,des − xcog( ) + xcog,des

 

θdes

xbase,des

ωbase,des

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= J#
cog,const xcog,ref       θdes t +1( ) = θdes t( )Δt + θdes t( )



Implentation In SL 
l  balance_task.cpp is the skeleton to use 
l  All important variables are pre-computed and 

commented 


