CS545—Floating Base
Control

e Operational Space Control
A theoretically very clean approach to creating task space controllers

e Floating Base Control
How to deal with underactuated robots
Derived largely from operational space control
How it is used in the NAO simulator

Balancing Robots are
Floating Base Systems

Operational Space Control

e Start with rigid body dynamics
Bg+C+g=1

e The operational space coordinates (e.g., endeffector) are
given through kinematics and differential kinematics

X:f(q)
x=Jq
X=Jq+Jq

Operational Space Control

e Derive the operational space dynamics
Bg+C+g=r7
JB'(Bij+C+g)=JB'7
Ji+JB ' (C+g)=JB'z
x+JB'C-Jq+JB 'g=JB"'J'F
(JB9") %+ (JB737) " (JB7'C- Jg)+(JB7J") JB'g=F

Bx + C+g = F: Opertional space dynamics

B

(J B'J')_1 : Opertional space inertia matrix

C

(JB'J')_] (J B'C-J q) : Opertional corriolis/centripedal forces

g (JB‘IJT)_1 JB 'g: Opertional space gravity forces

Operational Space Control

e Operational Space Control Law

Assume a desired operatational space trajectory:

%, =%, +K,(x,-%)+K (x,-x)

such that the appropriate force to realize this trajectory is:
F=Bx, ,
convert to joint space:

7=J'F

t=BB"J" (B, +C+g)

7= Bj(xref ~Jqg+JB'(C+ g))

Add null space forces by:

T= Bj(iref - Jq + JB_1 (C + g)) + (I - JTj)Tnull

+C+g

J=B'J (JB_lJ !)_1 : inertia weighted pseudo inverse

Floating Base Control

e Treat Robot as a “Space Robot”

Bq+C+g=S"7
where
S=| I" 0°] : selector matrix, like operational space Jacobian
~ q
q =
XB

If the robot is in contact with the world, add constraint
forces:

A Possible Floating Base
Control Law

e \Write the joint space dynamics from operational space
control derivations:

(SB'S")q+S" (C+g-J/f,,)="1

e This is essentially an inverse dynamics control law, but it
requires reliable force measurement at the constraint
points

A Better Floating Base
Control Law

e Decompose the constraint matrix by a QR
decomposition:

T R
=0

Q is orthonormal Q'Q=QQ" =1

R is upper triangular of rank k (k is the number of constraints)

With some algebra, a control law becomes:
t=(5,Q'S")'S,Q" (B, +C+8)
S, = [0<n+6—k>><k I(n+6—k)><(n+6—k) }

e This control does not require knowledge of the external
forces, and this is what is implemented for the NAO

Theory of COG Inverse
Kinematics

COG:x,, = Zmixl e
2 m, i=1
i=1
ox 1 & OX,
COG Jacobian: J,, =—== Zmi —Tixog

“¢ 90 imi p 00

Floating Base COG Jacobian: J,, 4., = [Jooe Jiase }

Constraints from standing on 2 feet: J ., 7.0 | Xpuse =0 (no slipping)

Null Space Projection for Constraints: N = (I —J e toard e ﬂom)

Constraint COG Jacobian: J =J N

cog const cog= "¢

Inverse Kinematics with
Constraint COG Jacobian

e Given: Desired trajectory of COG

X X

cog des >~ cog des

e Reference COG velocity

Xcag,ref — kp (XCOg,des o Xcog) T Xcog,des

e |K Solution

Xbase,a’es = J#co ,CON Xco Jef edes (t + 1) — éa’es (t)At + edes (t)

Implentation In SL

e balance task.cpp is the skeleton to use

e All important variables are pre-computed and
commented

