CS545—Contents XI

- Newton-Euler Method of Deriving Equations of Motion
 - Newton's Equation
 - Euler's Equation
 - The Newton-Euler Recursion
 - Automatic Generation of Equations of Motion
- Reading Assignment for Next Class
 - See http://www-clmc.usc.edu/~cs545

Newton's & Euler's Equations

- Newton's Equation:
 - Expresses the force acting at the CM for an accelerated body

$$\mathbf{F} = m \ddot{\mathbf{p}}_{cm}$$

- Euler's Equations
 - Expresses the torque acting on a rigid body given an angular velocity and angular acceleration

$$\tau = I^{cm}\dot{\omega} + \omega \times I^{cm}\omega$$

- Idea of Newton-Euler
 - Force and torque balance at every link
 - Recursion through all links
- What do we need?
 - Angular velocities and accelerations of each link
 - Linear velocities at each link

Computing Angular Velocities

- Start at joint 1, recursion to higher joints
- Angular Velocity of link i+1, expressed in base coordinates $\omega = \omega + \dot{A}_7$

$$\boldsymbol{\omega}_i = \boldsymbol{\omega}_{i-1} + \boldsymbol{\theta}_i \boldsymbol{z}_{i-1}$$

- What happens to prismatic joints in this equation?
 - Nothing :-)

$$\omega_i = \omega_{i-1}$$

Computing Angular Accelerations

- Start at joint 1, recursion to higher joints
- Angular Acceleration of link i+1, expressed in coordinate system i+1 is obtained from differentiating the angular velocities

$$\boldsymbol{\omega}_{i+1}^{i+1} = \mathbf{R}_{i}^{i+1} \boldsymbol{\omega}_{i}^{i} + \dot{\boldsymbol{\theta}}_{i+1} z_{i+1}^{i+1}$$
$$\dot{\boldsymbol{\omega}}_{i+1}^{i+1} = \mathbf{R}_{i}^{i+1} \dot{\boldsymbol{\omega}}_{i}^{i} + \mathbf{R}_{i}^{i+1} \boldsymbol{\omega}_{i}^{i} \times \dot{\boldsymbol{\theta}}_{i+1} z_{i+1}^{i+1} + \ddot{\boldsymbol{\theta}}_{i+1} z_{i+1}^{i+1}$$

• For prismatic joints

$$\dot{\boldsymbol{\omega}}_{i+1}^{i+1} = \mathbf{R}_i^{i+1} \dot{\boldsymbol{\omega}}_i^i$$