CS545—Contents XIi

e Nonlinear Control

Joint space control
Decoupled control
PID control in joint space

Centralized control
Compute torque control

Inverse dynamics control
Operational space control

e Reading Assignment for Next Class

See http://www-clmc.usc.edu/~cs545




Two Control Spaces

e Joint Space:

Solve two separate subproblems

Inverse kinematics to transform desired trajectories in operational space into
joint space (including higher derivatives!)

Joint space controller tracks desired trajectories in joint space

Quality of control depends on quality of kinematics model (indirect control
method)

e Operational Space:

Formulate the controller directly in operational space, e.g., a PD controller in
Cartesian space.

Inverse kinematics is somehow included in the operational space controller

Quality of control is independent of kinematics if sensor measurements are
taken directly in operational space (but this is rarely the case)

Controller can break if inverse kinematics is ill-defined.



Joint Space Control

B(q)4+C(q,9)q+G(q)=7

e Independent (de-centralized) Joint Space Control

|s appropriate when:

Coupling terms are negligible and can be treated as disturbances
Robot is really decoupled (i.e., like a set of 1DOF robots)

Gains can be chosen really high

No computational power exists

e Dependent (centralized) Joint Space Control

|s appropriate when:
Coupling terms cannot be neglected anymore



Independent Joint Space
Control

e Negative Feedback Control in Joint Space
Coupling terms are treated as disturbances
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In order to deal with disturbances from coupling terms more effectively,
an acceleration-based feedback term is often added (note that good
acceleration signals are not easy to obtain from real sensors)



Independent Joint Space
Control (cont’d)

e Feedforward Compensation in Joint Space
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e \What is the right choice of a de-centralized feedforward

controller?
Need de-centralized inertial, damping, and spring term



Computed Torque
Feedforward Control

e A hybrid centralized—decentralized control strategy
Use de-centralized PID controller for stabilization
Use (centralized) inverse dynamics model to add feedforward command

B(q)4+C(q,a4)q+G(q)=7
B(q)d+C(q,9)q+G(q)=

B(qd)qd + C(qd 9qd)qd + G(qd ) + KP (q_ q, ) + Kp(q_ qd )
In approximation:
B(q)é +C(q,q)¢ +G(g)e=K e + K¢

B(‘l)é + (C(Qaq) - KD)e + (G(q) -K, )e =0
e The error dynamics forms a second order linear time variant

dynamical system that can be stabilized with a suitable choice of the
feedback gains (assuming the model is accurate)



Computed Torque
Feedforward Control (cont’d)

e Remarks:
Feedforward command is only based on DESIRED states
Higher derivatives of desired states are usually clean

Feedforward commands are not very accurate if the system
deviates too much form the desired trajectory

Feedforward commands can be computed off-line if necessary
(computational burden)



Nonlinear Centralized
Control

e Decentralized and hybrid approaches are not really
proper centralized nonlinear controllers since the
negative feedback control law assumes decoupling

e Goal: Develop a nonlinear negative feedback controller

e Most common approach: Feedback linearization



A Simple Example of a
Nonlinear Control Law

e PD Control with Gravity Compensation (S&S, Ch.6.5.1)
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Proper Inverse Dynamics
Control

B(q)i+C(q.4)q+G(q)=7
u=B(q)d,, +C(q.9)a+G(q)+K,(q,-q)+K,(q, - q)

e Note:
Online computation of inverse dynamics is always required

Higher derivatives of real system are required (not always
possible with reasonable accuracy and acceptable phase lags)

Perfect knowledge of the dynamics model is assumed
High servo loop frequencies are required
Further improvements: Robust Control (S&S 6.5.3)



Operational Space Control

e Joint space:

Negative feedback control requires inverse kinematics, then joint
space error can be computed

Operational space:

Use direct kinematics to transform joint space variables into
operational space, and compute operational space error (much
cheaper computation)

New problems

Motor command in operational space needs to be transformed into
joint space

System dynamics in operational space needs to be considered
Usually computationally expensive



Operational Space Control
Schemes

e Jacobian Inverse Control (S&S 6.6.1)
e Jacobian Transpose Control (S&S 6.6.1)



