

CS545—Contents XII

- Nonlinear Control
 - Joint space control
 - Decoupled control
 - PID control in joint space
 - Centralized control
 - Compute torque control
 - Inverse dynamics control
 - Operational space control
- Reading Assignment for Next Class
 - See http://www-clmc.usc.edu/~cs545

Two Control Spaces

- Joint Space:
 - Solve two separate subproblems
 - Inverse kinematics to transform desired trajectories in operational space into joint space (including higher derivatives!)
 - Joint space controller tracks desired trajectories in joint space
 - Quality of control depends on quality of kinematics model (indirect control method)
- Operational Space:
 - Formulate the controller directly in operational space, e.g., a PD controller in Cartesian space.
 - Inverse kinematics is somehow included in the operational space controller
 - Quality of control is independent of kinematics if sensor measurements are taken directly in operational space (but this is rarely the case)
 - Controller can break if inverse kinematics is ill-defined.

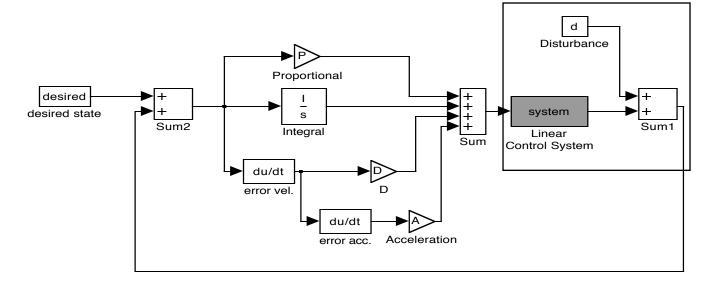
Joint Space Control

 $\mathbf{B}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) = \tau$

- Independent (de-centralized) Joint Space Control
 - Is appropriate when:
 - Coupling terms are negligible and can be treated as disturbances
 - Robot is really decoupled (i.e., like a set of 1DOF robots)
 - Gains can be chosen really high
 - No computational power exists
- Dependent (centralized) Joint Space Control
 - Is appropriate when:
 - Coupling terms cannot be neglected anymore

Independent Joint Space Control

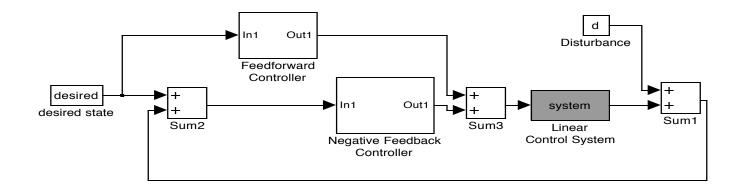
- Negative Feedback Control in Joint Space
 - Coupling terms are treated as disturbances



 In order to deal with disturbances from coupling terms more effectively, an acceleration-based feedback term is often added (note that good acceleration signals are not easy to obtain from real sensors)

Independent Joint Space Control (cont'd)

• Feedforward Compensation in Joint Space



- What is the right choice of a de-centralized feedforward controller?
 - Need de-centralized inertial, damping, and spring term

Computed Torque Feedforward Control

- A hybrid centralized-decentralized control strategy
 - Use de-centralized PID controller for stabilization
 - Use (centralized) inverse dynamics model to add feedforward command

 $B(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + G(\mathbf{q}) = \tau$ $B(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + G(\mathbf{q}) =$ $B(\mathbf{q}_d)\ddot{\mathbf{q}}_d + C(\mathbf{q}_d,\dot{\mathbf{q}}_d)\dot{\mathbf{q}}_d + G(\mathbf{q}_d) + \mathbf{K}_P(\mathbf{q} - \mathbf{q}_d) + \mathbf{K}_D(\dot{\mathbf{q}} - \dot{\mathbf{q}}_d)$ In approximation: $B(\mathbf{q})\ddot{\mathbf{e}} + C(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{e}} + G(\mathbf{q})\mathbf{e} = \mathbf{K}_P\mathbf{e} + \mathbf{K}_D\dot{\mathbf{e}}$ $B(\mathbf{q})\ddot{\mathbf{e}} + (C(\mathbf{q},\dot{\mathbf{q}}) - \mathbf{K}_D)\mathbf{e} + (G(\mathbf{q}) - \mathbf{K}_P)\mathbf{e} = 0$

 The error dynamics forms a second order linear time variant dynamical system that can be stabilized with a suitable choice of the feedback gains (assuming the model is accurate)

Computed Torque Feedforward Control (cont'd)

• Remarks:

- Feedforward command is only based on DESIRED states
 - Higher derivatives of desired states are usually clean
- Feedforward commands are not very accurate if the system deviates too much form the desired trajectory
- Feedforward commands can be computed off-line if necessary (computational burden)

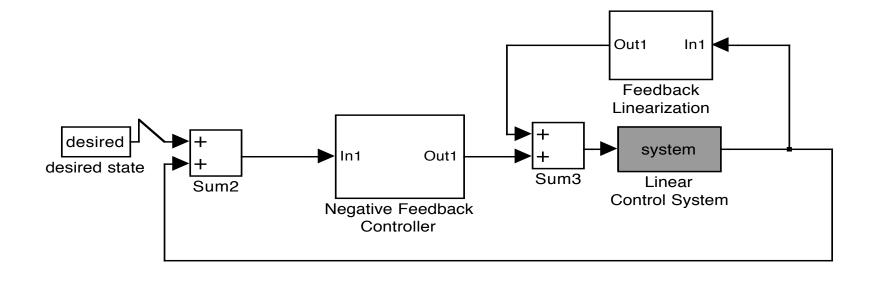
Nonlinear Centralized Control



- Decentralized and hybrid approaches are not really proper centralized nonlinear controllers since the negative feedback control law assumes decoupling
- Goal: Develop a nonlinear negative feedback controller
- Most common approach: Feedback linearization

A Simple Example of a Nonlinear Control Law

• PD Control with Gravity Compensation (S&S, Ch.6.5.1)



Proper Inverse Dynamics Control

$$\mathbf{B}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) = \tau$$

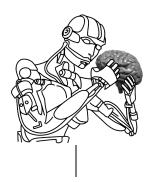
$$\mathbf{u} = \mathbf{B}(\mathbf{q})\ddot{\mathbf{q}}_{ref} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) + \mathbf{K}_p(\mathbf{q}_d - \mathbf{q}) + \mathbf{K}_D(\mathbf{q}_d - \mathbf{q})$$

- Note:
 - Online computation of inverse dynamics is always required
 - Higher derivatives of real system are required (not always possible with reasonable accuracy and acceptable phase lags)
 - Perfect knowledge of the dynamics model is assumed
 - High servo loop frequencies are required
 - Further improvements: Robust Control (S&S 6.5.3)

Operational Space Control

- Joint space:
 - Negative feedback control requires inverse kinematics, then joint space error can be computed
- Operational space:
 - Use direct kinematics to transform joint space variables into operational space, and compute operational space error (much cheaper computation)
 - New problems
 - Motor command in operational space needs to be transformed into joint space
 - System dynamics in operational space needs to be considered
 - Usually computationally expensive

Operational Space Control Schemes



- Jacobian Inverse Control (S&S 6.6.1)
- Jacobian Transpose Control (S&S 6.6.1)