
CS545—Contents XIII
  Trajectory Planning

  Control Policies
  Desired Trajectories
  Optimization Methods
  Dynamical Systems

  Reading Assignment for Next Class
  See http://www-clmc.usc.edu/~cs545

Learning Policies is the Goal of
Learning Control

  Policy: u t() = p x t(), t,α()

Dynamic Programming &
Reinforcement Learning

Movement
System

Nonlinear
Controller (Policy)

Desired
Behavior u x

  Dynamic Programming
  requires a model of the movement system

  Reinforcement Learning
  can work without models of the movement system

  Essentials
  both techniques require to learn a high-dimensional “value function” that

assesses the quality of an action u in a state x
  learning the value function is a complex nonstationary, nonlinear learning

process
  both methods die the curse of dimensionality

V = max
u

r x,u() + τ ∂V x()
∂x

f x,u()⎡
⎣⎢

⎤
⎦⎥

(HJB-Eqn.)

Desired Trajectories

  Essentials
  prescribe a desired trajectory

  convert desired trajectory into a (time-dependent) control policy, e.g., by PD-
controller

  Problems
  Where do desired trajectories come from
  How to accomplish reactive control
  How to generalize to new tasks or new situations

θ, θ()desired = f ξinitial ,ξtarget , t()

u = p x, t,α() = kθ θ t()desired −θ() + k θ θ t()desired − θ()

Desired Trajectories
(cont’d)
  There is a difference between PATH and TRAJECTORY planning

  A trajectory involves geometry AND time
  A path involves only geometry

  Planning can happen either in joint or operational space

  There is usually an infinity of possible desired trajectories
  How is the desired trajectory represented?

  Every point in time?
  Only start & final point?
  Via points?

  Movement Primitives

xd = g t,α()
or

θd = f t,α()

Joint Space Planning
  What could one plan?

  Arbitrary trajectories from start to end
  Trapizoidal (or any aother kind of) velocity profiles
  Polynomials:

  1.order: straight lines
  2.order: parabolas
  3.order: cubic splines
  5 order: quintic splines
  Interesting:

  Analyze the shape of the trajectories in position, velocity, acceleration, and
jerk space.

  How many constraints are needed to specify a trajectory

Example:Cubic Polynomial
  Cubic Polynomial:

  Given: Start & Endpoint

  Plan a cubic polynomical through the start and endpoint
  Two additional constraints are needed, for instance:

  Determine the coefficients by using 4 boundary conditions, e.g.,

q t()=a0 +a1t +a2t
2 +a3t

3

˙ q t()=a1 +2a2t +3a3t
2

˙ ̇ q t()=2a2 +6a3t

qs,qf

˙ q s, ˙ q f or ˙ q s, ˙ ̇ q s or ˙ q f , ˙ ̇ q f

qs =a0

˙ q s =a1

q f =a0 +a1t +a2t 2 +a3t3

˙ q f =a1 +2a2t +3a3t 2

Planning Complex Paths
  Prescribe a set of via-points

  Plan simple trajectories between via-points
  Ensure smooth transitions between trajectory segments

  E.g., the tangent of two adjacent trajectory segments should
match

Optimization Approaches
to Desired Trajectories
  Given:

  “hard constraints”, e.g.,

  “soft constraints”, i.e., an optimization criterion

  Goal:
  Find the trajectory that fulfills the hard constraints while

minimizing (or maximizing) the soft constraint
  Solution Methods:

  Calculus of Variation
  Dynamic Programming

 qs,qf ,t

J = g q, q,…()

0

τ

∫ dt

Optimization Approaches
Examples
  Minimum kinetic energy

  Results in a quadratic polynomial as solution

  Minimum Jerk

  Results in a qunitic polynomial as solution

  Minimum Torque Change

  Results in something that does not have an analytical description

J = q 2

0

τ

∫ dt

J = u2

0

τ

∫ dt

J = q2

0

τ

∫ dt

Operational Space
Planning
  All joint space planning methods can also be used in

operational space
  Inverse kinematics is needed to convert operational

space trajectories into joint space
  The resulting joint space motion is usually quite complex
  Geometric problems can arise:

  Intermediate points are unreachable
  High joint space motion near singular postures
  Start and goal reachable in different solutions

Examples of Geometric
Problems

Pattern Generators for Desired
Trajectories

  Use Pattern Generators to Create Kinematic Trajectory Plans
  Use open parameters in pattern generator to generate different movement

durations and target settings

Pattern Generators for
Trajectory Planing
  What is a pattern generator?

  A dynamical system (differential equation) with a particular behavior
  E.g.: Reaching movement can be interpreted as a point attractive behavior:

  What is the advantage of a pattern generator?
  Independent of initial conditions
  Online planning
  Online modification through additional “coupling” terms. i.e., planning

can react to sensory input

TargetSpeed

qd = α qf − qd()

qd = α qf − qd() + β qd − q()

Pattern Generators for
Trajectory Planning
  Disadvantages of Pattern Generators

  Analysis of behavior is non trivial
  Need to integrate the equation of motion of the pattern generator

at sufficiently high frequency
  Exact shape of desired trajectories that are generated by the

pattern generator are not easy to predict if external coupling is
added

  Modeling of with pattern generators usually requires the
manipulation of nonlinear dynamical equations, which is non
trivial again

Shaping Attractor
Landscapes

�

˙ z = α z βz g − y() − z()
˙ y = z

Goal=g

Second order dynamics:

Shaping Attractor
Landscapes

�

˙ z = α z βz g − y() − z()
˙ y = f ?() + z()

Can one create more complex dynamics by�
nonlinearly modifying the simple second�
order system?

Goal=g

Shaping Attractor
Landscapes

�

˙ z = α z β z g − y() − z()
˙ y = α y f x,v() + z()
where
˙ v = α v β v g − x() − v()
˙ x = α xv

f x,v() =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci()2⎛
⎝

⎞
⎠

and x =
x − x0

g − x0

  A globally stable learnable nonlinear point attractor:

Local Linear�
Model Approx.

Canonical �
Dynamics

Trajectory Plan�
Dynamics

Example: A Trajectory with
Movement Reversal

W
i/

 W
j

Example: A Minimum Jerk
Trajectory

0 0.2 0.4 0.6 0.8 1
-5

0

5

10
v

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60
y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
s

0 0.2 0.4 0.6 0.8 1
40

42

44

46

48

50
r

0 0.2 0.4 0.6 0.8 1
-200

0

200

400
vd

0 0.2 0.4 0.6 0.8 1
-20

0

20

40
yd

0 0.2 0.4 0.6 0.8 1
-200

0

200

400
sd

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
rd

speed=1.000000

Learning The Attractor
from Demonstration

  Given a demonstrated trajectory y(t)demo
and a goal g
  Extract movement duration
  Adjust time constants of canonical dynamics to movement duration
  Use LWL to learn supervised problem

  Usually 1-5 learning epochs suffice to get good approximation

�

˙ y target =
˙ y demo

α y

− z = f x,v()

Imitation Learning of a
Tennis Forehand

Note: All 30 joint space trajectories�
are fitted independently

Imitation Learning of a
Tennis Backhand

Limit Cycle Dynamics for
Rhythmic Movement

  A globally stable learnable limit cycle:

Trajectory Plan Dyanmics
z = α z βz g − ym() − z()
y = α y f r,ϕ() + z()

⎧
⎨
⎪

⎩⎪
where

Canonical System
r = α r A − r()
ϕ =ω

⎧
⎨
⎩

Local Linear Models
using van Mises bases

f x,v() =

wibi
Tx

i=1

k

∑

wi
i=1

k

∑
where x =

r cosϕ
r sinϕ

⎡

⎣
⎢

⎤

⎦
⎥

wi = exp di cos ϕ − ci() −1()()

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Example: A Complex
Rhythmic Trajectory

W
i/

 W
j

Imitation Learning of a
Drumming Motion

Imitation Learning of a
Figure-8 Motion

Pattern Generators for Rhythmic
and Discrete Movement

r

Δv1 = t1 − p1, r[]+

˙ v 1 = av −v1 + Δv1()
Δv2 = t2 − p2,r[]+

˙ v 2 = av −v2 + Δv2()
θr = p1,r = −p2,r

˙ θ r = ˙ p 1, r = − ˙ p 2,r

˙ x 1 = −axx1 + v1 − x1()cr + C1,r

˙ y 1 = −ayy1 + x1 − y1()cr

˙ r 1 = ar −r1 + 1− r1()b v1()
˙ z 1 = −azz1 + y1 − z1() 1 − r1()cr

˙ p 1,r = apcr z1 − z2()

˙ x 2 = −ax x2 + v1 − x2()cr + C2, r

˙ y 2 = −ayy2 + x1 − y2()cr

˙ r 2 = ar −r2 + 1 − r2()bv2()
˙ z 2 = −az z2 + y2 − z2() 1− r2()cr

˙ p 2,r = apcr z2 − z1()

Δω1 = A − p1 − p1,r()[]+

˙ ξ 1 = aξ −ξ1 + Δω1()
˙ ψ 1 = −aψψ1 + ξ1 −ψ1 − bζ1 − w ψ 2[]+

+ C1,o()co

˙ ζ 1 = 1
5
−aζζ1 + ψ1[]+ −ζ1()co()

˙ p 1 = co ψ1[]+ − ψ 2[]+()

Δω2 = A − p2 − p2,r()[]+

˙ ξ 2 = aξ −ξ2 + Δω2()
˙ ψ 2 = −aψψ 2 + ξ2 −ψ2 − bζ 2 − wψ 1[]+

+ C2,o()co

˙ ζ 2 = 1
5
−aζζ 2 + ψ 2[]+ − ζ2()co()

˙ p 2 = co ψ 2[]+ − ψ1[]+()θ = p1 = −p2

˙ θ = ˙ p 1 = − ˙ p 2

Discrete Movement

Rhythmic Movement

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

zi
pi
pdi

Example from the Discrete
Pattern Generator

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
vi
xi
yi

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
ri

Discrete Movements at
Different Speeds

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8

Example from the
Rhythmic Pattern
Generator

0 1 2 3 4 5
-0.2

-0.1

0

0.1

0.2
th
et
a r

0 1 2 3 4 5
-1

-0.5

0

0.5

1

th
et
ad

r

