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e Trajectory Planning
Control Policies
Desired Trajectories
Optimization Methods
Dynamical Systems

e Reading Assignment for Next Class
See http://www-clmc.usc.edu/~cs545
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o Policy: u(t)=p(x(t),t,(x)
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Internal & External State: x(t) - Action: u(t)



Dynamic Programming &
Reinforcement Learning

Desired
Behavior i u
) Nonlinear Movement X

Controller (Policy) . System -
A
(HJB-Eqn.)

V= mfx[r(x,u) + ng—fj)f(x,“)}

e Dynamic Programming

requires a model of the movement system
e Reinforcement Learning

can work without models of the movement system
e Essentials

both techniques require to learn a high-dimensional “value function” that
assesses the quality of an action u in a state x

learning the value function is a complex nonstationary, nonlinear learning
process

both methods die the curse of dimensionality



Desired Trajectories

Xdesired PID

Controller

e Essentials
prescribe a desired trajectory

( 6, 9 ) dosired f ( (éinitial ) étargef U )

convert desired trajectory into a (time-dependent) control policy, e.g., by PD-

controller
u=p(x.t,00)=k,(0(t),.  —0)+k,(6(s),.,. —6)
e Problems
Where do desired trajectories come from
How to accomplish reactive control
How to generalize to new tasks or new situations

desired desired



Desired Trajectories
(cont’d)

There is a difference between PATH and TRAJECTORY planning

A trajectory involves geometry AND time
A path involves only geometry

Planning can happen either in joint or operational space

Xy = g(t,OC)
or
0, = f(t’(x)

There is usually an infinity of possible desired trajectories
How is the desired trajectory represented?

Every point in time?

Only start & final point?

Via points?
Movement Primitives



Joint Space Planning

e \What could one plan?
Arbitrary trajectories from start to end
Trapizoidal (or any aother kind of) velocity profiles

Polynomials:

1.order: straight lines

2.order: parabolas

3.order: cubic splines

5 order: quintic splines

Interesting:
Analyze the shape of the trajectories in position, velocity, acceleration, and
jerk space.

How many constraints are needed to specify a trajectory



Example:Cubic Polynomial

e Cubic Polynomial: g(t)=a, +at+ar® +a.r
¢(t)=a, +2a,t +3a,t’
G§(t)=2a, +6a,t

e Given: Start & Endpoint
QS’Qf

e Plan a cubic polynomical through the start and endpoint

Two additional constraints are needed, for instance:
4,.4; or §,4, or q,.q,

Determine the coefficients by using 4 boundary conditions, e.g.,

qs =a0

qs =al

g, =a, +a,t +a,t* +a;t’

g, =a, +2a,t +3a;t’



Planning Complex Paths

e Prescribe a set of via-points

e Plan simple trajectories between via-points

e Ensure smooth transitions between trajectory segments

E.g., the tangent of two adjacent trajectory segments should
match



Optimization Approaches
to Desired Trajectories

e Given:

“hard constraints”, e.qg.,
q,-4;,t

“soft constraints”, i.e., an optimization criterion

J = J.Ofg(q,q,...)dt
o Goal:

Find the trajectory that fulfills the hard constraints while
minimizing (or maximizing) the soft constraint

Solution Methods:
Calculus of Variation
Dynamic Programming



Optimization Approaches
Examples

e Minimum kinetic energy

T
-2
J =J g~ dt
0
Results in a quadratic polynomial as solution
e Minimum Jerk T,
J =J g dt
0

Results in a qunitic polynomial as solution
e Minimum Torque Change

J = jofuzdt

Results in something that does not have an analytical description



Operational Space
Planning

e All joint space planning methods can also be used in
operational space

e Inverse kinematics is needed to convert operational
space trajectories into joint space

e The resulting joint space motion is usually quite complex

e (Geometric problems can arise:
Intermediate points are unreachable
High joint space motion near singular postures
Start and goal reachable in different solutions



Examples of Geometric
Problems




Pattern Generators for Desireg

Trajectories
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Perceptual Information

e Use Pattern Generators to Create Kinematic Trajectory Plans
Use open parameters in pattern generator to generate different movement

durations and target settings



Pattern Generators for
Trajectory Planing

e What is a pattern generator?

A dynamical system (differential equation) with a particular behavior
E.g.: Reaching movement can be interpreted as a point attractive behavior:

d, :a(q]‘ _Qd)

\

Speed Target
e What is the advantage of a pattern generator?
Independent of initial conditions

Online planning
Online modification through additional “coupling” terms. i.e., planning
can react to sensory input

d, :a(qf_%)"'ﬁ(qcz_Q)



Pattern Generators for
Trajectory Planning

e Disadvantages of Pattern Generators
Analysis of behavior is non trivial

Need to integrate the equation of motion of the pattern generator
at sufficiently high frequency

Exact shape of desired trajectories that are generated by the
pattern generator are not easy to predict if external coupling is
added

Modeling of with pattern generators usually requires the
manipulation of nonlinear dynamical equations, which is non
trivial again



Shaping Attractor

Landscapes

, Goal=g
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Second order dynamics:
z=a,(B.(s-¥)-2)
y=2z



Shaping Attractor
Landscapes
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Can one create more complex dynamics by
nonlinearly modifying the simple second
order system?

z=o.(B.(s—y)-2)
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Shaping Attractor
Landscapes

A globally stable learnable nonlinear point attractor:

~

Trajectory Plan ] =a (B.(g-v)-z)
Dynamics | =0, (f(x,v)+2)
where
Canonical ] v=a(B(e-x)-v)
Dynamics | k=ay
( zk:wl.blv
. flxv)=-5
Local Linear 3w
x > W,
Model Approx. =
w, = exp(—ldi(x—c )2j and ¥=2 0




Example: A Trajectory with
Movement Reversal
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Example: A Minimum Jerk
Trajectory
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Learning The Attractor
from Demonstration

Given a demonstrated trajectory y(t)4emo
and a goal g

Extract movement duration
Adjust time constants of canonical dynamics to movement duration
Use LWL to learn supervised problem

* ).) ento
o =222 = ()

y

Usually 1-5 learning epochs suffice to get good approximation



Imitation Learning of a
Tennis Forehand

Note: All 30 joint space trajectories
> are fitted independently
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Imitation Learning of a
Tennis Backhand
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Limit Cycle Dynamics for
Rhythmic Movement

A globally stable learnable limit cycle:

Trajectory Plan Dyanmics L= ('BZ (g R ) B Z)
y=a,(f(r.0)+2)

where
(F=a,(A-r)
=0

-

Canonical System 9

k
Y whix
Local Linear Models fx,v)=+4 where x = [

ngvnMissbases | 2
using van Mises bases Wi
i=1

(Wi = exp(a’l. (cos((p - cl.)— 1))
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Example: A Complex
Rhythmic Trajectory
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Imitation Learning of a
Drumming Motion
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Imitation Learning of a
Figure-8 Motion
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Pattern Generators for Rhythmic

and Discrete Movement

Discrete Movement

Ay, = [t, —p,’,]} Av, = [12 —ph]+ 6, =p,=-p,

v =a,(-v, +Av))
H=—ax +(v—x)c +C,
yi=-ay+(x-y)e
A=a(-n+(1-n)by)
G=-az,+(y-z)l-5)c

pl.r = apcr (Zl - ZZ)

Rhythmic Movement

Aw, = [A - (pl —p”)]+

5'1 = a;’(_él + Awl)

v, =a,(-v, +Av,) 0, =, =~ps,

Y =-ax+,—x)c +C,,

Y, = —a,y, +(x] _Y2)Cr
i o=a,(-r+(1-1)bv,)

5 =-a,3 +(y2 _Zz)(l_rz)cr

pZ.r = apcr (ZZ _Zl)

li/l =-a,y, + (él -V, - bgl - W[W2]+ + C]-")C“

é’l = %(_aggl + ([le]Jr - )Co)

p=c, ([WJF _[Wz ]+)

0=p =-p,
é:i%:_f’z

Ao, =[A=(p,-p,,)]

éz =4a, (_52 + sz)

v, = —a,y,+ (éz -y, —b{,— W[WIT + C2,u)ca
éz = é(_agCZ + ([Wzr - gz)cv)

P, =c, ([%T - [WI]+)



Example from the Discrete
Pattern Generator
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Discrete Movements at
Different Speeds
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Example from the
Rhythmic Pattern
Generator
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