
CS545—Contents XIII 
  Trajectory Planning 

  Control Policies 
  Desired Trajectories 
  Optimization Methods 
  Dynamical Systems  

  Reading Assignment for Next Class 
  See http://www-clmc.usc.edu/~cs545 



Learning Policies is the Goal of 
Learning Control 

  Policy: u t( ) = p x t( ), t,α( )



Dynamic Programming & 
Reinforcement Learning 

Movement
System

Nonlinear
Controller (Policy)

Desired
Behavior u x

  Dynamic Programming 
  requires a model of the movement system 

  Reinforcement Learning 
  can work without models of the movement system 

  Essentials 
  both techniques require to learn a high-dimensional “value function” that 

assesses the quality of an action u in a state x 
  learning the value function is a complex nonstationary, nonlinear learning 

process 
  both methods die the curse of dimensionality 

V = max
u

r x,u( ) + τ ∂V x( )
∂x

f x,u( )⎡
⎣⎢

⎤
⎦⎥

(HJB-Eqn.) 



Desired Trajectories 

  Essentials 
  prescribe a desired trajectory 

  convert desired trajectory into a (time-dependent) control policy, e.g., by PD-
controller 

  Problems 
  Where do desired trajectories come from 
  How to accomplish reactive control 
  How to generalize to new tasks or new situations 

 
θ, θ( )desired = f ξinitial ,ξtarget , t( )

 
u = p x, t,α( ) = kθ θ t( )desired −θ( ) + k θ θ t( )desired − θ( )



Desired Trajectories 
(cont’d) 
  There is a difference between PATH and TRAJECTORY planning 

  A trajectory involves geometry AND time 
  A path involves only geometry 

  Planning can happen either in joint or operational space 

  There is usually an infinity of possible desired trajectories 
  How is the desired trajectory represented? 

  Every point in time? 
  Only start & final point? 
  Via points? 

  Movement Primitives 

xd = g t,α( )
or

θd = f t,α( )



Joint Space Planning 
  What could one plan? 

  Arbitrary trajectories from start to end 
  Trapizoidal (or any aother kind of) velocity profiles 
  Polynomials: 

  1.order:  straight lines 
  2.order:  parabolas   
  3.order:  cubic splines 
  5 order:  quintic splines 
  Interesting:  

  Analyze the shape of the trajectories in position, velocity, acceleration, and 
jerk space. 

  How many constraints are needed to specify a trajectory 



Example:Cubic Polynomial  
  Cubic Polynomial: 

  Given: Start & Endpoint 

  Plan a cubic polynomical through the start and endpoint 
  Two additional constraints are needed, for instance: 

  Determine the coefficients by using 4 boundary conditions, e.g., 

  

q t( )=a0 +a1t +a2t
2 +a3t

3

˙ q t( )=a1 +2a2t +3a3t
2

˙ ̇ q t( )=2a2 +6a3t

qs,qf

˙ q s, ˙ q f    or   ˙ q s, ˙ ̇ q s   or   ˙ q f , ˙ ̇ q f

    

qs =a0

˙ q s =a1

q f =a0 +a1t +a2t 2 +a3t3

˙ q f =a1 +2a2t +3a3t 2



Planning Complex Paths 
  Prescribe a set of via-points 

  Plan simple trajectories between via-points 
  Ensure smooth transitions between trajectory segments 

  E.g., the tangent of two adjacent trajectory segments should 
match 



Optimization Approaches 
to Desired Trajectories 
  Given: 

  “hard constraints”, e.g., 

  “soft constraints”, i.e., an optimization criterion 

  Goal: 
  Find the trajectory that fulfills the hard constraints while 

minimizing (or maximizing) the soft constraint 
  Solution Methods: 

  Calculus of Variation 
  Dynamic Programming 

  qs,qf ,t

 
J = g q, q,…( )

0

τ

∫ dt



Optimization Approaches 
Examples 
  Minimum kinetic energy 

  Results in a quadratic polynomial as solution 

  Minimum Jerk 

  Results in a qunitic polynomial as solution 

  Minimum Torque Change 

  Results in something that does not have an analytical description 

 
J = q 2

0

τ

∫ dt

 
J = u2

0

τ

∫ dt

 
J = q2

0

τ

∫ dt



Operational Space 
Planning 
  All joint space planning methods can also be used in 

operational space 
  Inverse kinematics is needed to convert operational 

space trajectories into joint space 
  The resulting joint space motion is usually quite complex 
  Geometric problems can arise: 

  Intermediate points are unreachable 
  High joint space motion near singular postures 
  Start and goal reachable in different solutions 



Examples of Geometric 
Problems 



Pattern Generators for Desired 
Trajectories 

  Use Pattern Generators to Create Kinematic Trajectory Plans 
  Use open parameters in pattern generator to generate different movement 

durations and target settings 



Pattern Generators for 
Trajectory Planing 
  What is a pattern generator? 

  A dynamical system (differential equation) with a particular behavior 
  E.g.: Reaching movement can be interpreted as a point attractive behavior: 

  What is the advantage of a pattern generator? 
  Independent of initial conditions 
  Online planning 
  Online modification through additional “coupling” terms. i.e., planning 

can react to sensory input 

TargetSpeed

 
qd = α qf − qd( )

 
qd = α qf − qd( ) + β qd − q( )



Pattern Generators for 
Trajectory Planning 
  Disadvantages of Pattern Generators 

  Analysis of behavior is non trivial 
  Need to integrate the equation of motion of the pattern generator 

at sufficiently high frequency 
  Exact shape of desired trajectories that are generated by the 

pattern generator are not easy to predict if external coupling is 
added 

  Modeling of with pattern generators usually requires the 
manipulation of nonlinear dynamical equations, which is non 
trivial again 



Shaping Attractor 
Landscapes 

� 

˙ z = α z βz g − y( ) − z( )
˙ y = z

Goal=g

Second order dynamics:



Shaping Attractor 
Landscapes 

� 

˙ z = α z βz g − y( ) − z( )
˙ y = f ?( ) + z( )

Can one create more complex dynamics by�
nonlinearly modifying the simple second�
order system?

Goal=g



Shaping Attractor 
Landscapes 

� 

˙ z = α z β z g − y( ) − z( )
˙ y = α y f x,v( ) + z( )
where
˙ v = α v β v g − x( ) − v( )
˙ x = α xv

f x,v( ) =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci( )2⎛ 
⎝ 

⎞ 
⎠ 

and  x =
x − x0

g − x0

  A globally stable learnable nonlinear point attractor: 

Local Linear�
Model Approx.

Canonical �
Dynamics

Trajectory Plan�
Dynamics



Example: A Trajectory with 
Movement Reversal 

W
i/

 W
j



Example: A Minimum Jerk 
Trajectory 
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Learning The Attractor 
from Demonstration 

  Given a demonstrated trajectory y(t)demo  
and a goal g  
  Extract movement duration 
  Adjust time constants of canonical dynamics to movement duration 
  Use LWL to learn supervised problem 

  Usually 1-5 learning epochs suffice to get good approximation 

� 

˙ y target =
˙ y demo

α y

− z = f x,v( )



Imitation Learning of a  
Tennis Forehand 

Note: All 30 joint space trajectories�
are fitted independently



Imitation Learning of a  
Tennis Backhand 



Limit Cycle Dynamics for 
Rhythmic Movement 

  A globally stable learnable limit cycle: 

 

Trajectory Plan Dyanmics
z = α z βz g − ym( ) − z( )
y = α y f r,ϕ( ) + z( )

⎧
⎨
⎪

⎩⎪
where

Canonical System            
r = α r A − r( )
ϕ =ω

⎧
⎨
⎩

Local Linear Models
using van Mises bases

     
f x,v( ) =

wibi
Tx

i=1

k

∑

wi
i=1

k

∑
where  x =

r cosϕ
r sinϕ

⎡

⎣
⎢

⎤

⎦
⎥

wi = exp di cos ϕ − ci( ) −1( )( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪



Example: A Complex  
Rhythmic Trajectory 
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Imitation Learning of a 
Drumming Motion 



Imitation Learning of a  
Figure-8 Motion 



Pattern Generators for Rhythmic 
and Discrete Movement 

r

Δv1 = t1 − p1, r[ ]+

˙ v 1 = av −v1 + Δv1( )
Δv2 = t2 − p2,r[ ]+

˙ v 2 = av −v2 + Δv2( )
θr = p1,r = −p2,r

˙ θ r = ˙ p 1, r = − ˙ p 2,r

˙ x 1 = −axx1 + v1 − x1( )cr + C1,r

˙ y 1 = −ayy1 + x1 − y1( )cr

˙ r 1 = ar −r1 + 1− r1( )b v1( )
˙ z 1 = −azz1 + y1 − z1( ) 1 − r1( )cr

˙ p 1,r = apcr z1 − z2( )

˙ x 2 = −ax x2 + v1 − x2( )cr + C2, r

˙ y 2 = −ayy2 + x1 − y2( )cr

˙ r 2 = ar −r2 + 1 − r2( )bv2( )
˙ z 2 = −az z2 + y2 − z2( ) 1− r2( )cr

˙ p 2,r = apcr z2 − z1( )

Δω1 = A − p1 − p1,r( )[ ]+

˙ ξ 1 = aξ −ξ1 + Δω1( )
˙ ψ 1 = −aψψ1 + ξ1 −ψ1 − bζ1 − w ψ 2[ ]+

+ C1,o( )co

˙ ζ 1 = 1
5
−aζζ1 + ψ1[ ]+ −ζ1( )co( )

˙ p 1 = co ψ1[ ]+ − ψ 2[ ]+( )

Δω2 = A − p2 − p2,r( )[ ]+

˙ ξ 2 = aξ −ξ2 + Δω2( )
˙ ψ 2 = −aψψ 2 + ξ2 −ψ2 − bζ 2 − wψ 1[ ]+

+ C2,o( )co

˙ ζ 2 = 1
5
−aζζ 2 + ψ 2[ ]+ − ζ2( )co( )

˙ p 2 = co ψ 2[ ]+ − ψ1[ ]+( )θ = p1 = −p2

˙ θ = ˙ p 1 = − ˙ p 2

Discrete Movement 

Rhythmic Movement 
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Example from the Discrete 
Pattern Generator 
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Discrete Movements at 
Different Speeds 

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8



Example from the 
Rhythmic Pattern 
Generator 
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