
CS545—Contents XIII
  Trajectory Planning

  Control Policies
  Desired Trajectories
  Optimization Methods
  Dynamical Systems

  Reading Assignment for Next Class
  See http://www-clmc.usc.edu/~cs545

Learning Policies is the Goal of
Learning Control

  Policy: u t() = p x t(), t,α()

Dynamic Programming &
Reinforcement Learning

Movement
System

Nonlinear
Controller (Policy)

Desired
Behavior u x

  Dynamic Programming
  requires a model of the movement system

  Reinforcement Learning
  can work without models of the movement system

  Essentials
  both techniques require to learn a high-dimensional “value function” that

assesses the quality of an action u in a state x
  learning the value function is a complex nonstationary, nonlinear learning

process
  both methods die the curse of dimensionality

V = max
u

r x,u() + τ ∂V x()
∂x

f x,u()⎡
⎣⎢

⎤
⎦⎥

(HJB-Eqn.)

Desired Trajectories

  Essentials
  prescribe a desired trajectory

  convert desired trajectory into a (time-dependent) control policy, e.g., by PD-
controller

  Problems
  Where do desired trajectories come from
  How to accomplish reactive control
  How to generalize to new tasks or new situations

θ, θ()desired = f ξinitial ,ξtarget , t()

u = p x, t,α() = kθ θ t()desired −θ() + k θ θ t()desired − θ()

Desired Trajectories
(cont’d)
  There is a difference between PATH and TRAJECTORY planning

  A trajectory involves geometry AND time
  A path involves only geometry

  Planning can happen either in joint or operational space

  There is usually an infinity of possible desired trajectories
  How is the desired trajectory represented?

  Every point in time?
  Only start & final point?
  Via points?

  Movement Primitives

xd = g t,α()
or

θd = f t,α()

Joint Space Planning
  What could one plan?

  Arbitrary trajectories from start to end
  Trapizoidal (or any aother kind of) velocity profiles
  Polynomials:

  1.order: straight lines
  2.order: parabolas
  3.order: cubic splines
  5 order: quintic splines
  Interesting:

  Analyze the shape of the trajectories in position, velocity, acceleration, and
jerk space.

  How many constraints are needed to specify a trajectory

Example:Cubic Polynomial
  Cubic Polynomial:

  Given: Start & Endpoint

  Plan a cubic polynomical through the start and endpoint
  Two additional constraints are needed, for instance:

  Determine the coefficients by using 4 boundary conditions, e.g.,

q t()=a0 +a1t +a2t
2 +a3t

3

˙ q t()=a1 +2a2t +3a3t
2

˙ ̇ q t()=2a2 +6a3t

qs,qf

˙ q s, ˙ q f or ˙ q s, ˙ ̇ q s or ˙ q f , ˙ ̇ q f

qs =a0

˙ q s =a1

q f =a0 +a1t +a2t 2 +a3t3

˙ q f =a1 +2a2t +3a3t 2

Planning Complex Paths
  Prescribe a set of via-points

  Plan simple trajectories between via-points
  Ensure smooth transitions between trajectory segments

  E.g., the tangent of two adjacent trajectory segments should
match

Optimization Approaches
to Desired Trajectories
  Given:

  “hard constraints”, e.g.,

  “soft constraints”, i.e., an optimization criterion

  Goal:
  Find the trajectory that fulfills the hard constraints while

minimizing (or maximizing) the soft constraint
  Solution Methods:

  Calculus of Variation
  Dynamic Programming

 qs,qf ,t

J = g q, q,…()

0

τ

∫ dt

Optimization Approaches
Examples
  Minimum kinetic energy

  Results in a quadratic polynomial as solution

  Minimum Jerk

  Results in a qunitic polynomial as solution

  Minimum Torque Change

  Results in something that does not have an analytical description

J = q 2

0

τ

∫ dt

J = u2

0

τ

∫ dt

J = q2

0

τ

∫ dt

Operational Space
Planning
  All joint space planning methods can also be used in

operational space
  Inverse kinematics is needed to convert operational

space trajectories into joint space
  The resulting joint space motion is usually quite complex
  Geometric problems can arise:

  Intermediate points are unreachable
  High joint space motion near singular postures
  Start and goal reachable in different solutions

Examples of Geometric
Problems

Pattern Generators for Desired
Trajectories

  Use Pattern Generators to Create Kinematic Trajectory Plans
  Use open parameters in pattern generator to generate different movement

durations and target settings

Pattern Generators for
Trajectory Planing
  What is a pattern generator?

  A dynamical system (differential equation) with a particular behavior
  E.g.: Reaching movement can be interpreted as a point attractive behavior:

  What is the advantage of a pattern generator?
  Independent of initial conditions
  Online planning
  Online modification through additional “coupling” terms. i.e., planning

can react to sensory input

Target
Speed

qd = α qf − qd()

qd = α qf − qd() + β qd − q()

Pattern Generators for
Trajectory Planning
  Disadvantages of Pattern Generators

  Analysis of behavior is non trivial
  Need to integrate the equation of motion of the pattern generator

at sufficiently high frequency
  Exact shape of desired trajectories that are generated by the

pattern generator are not easy to predict if external coupling is
added

  Modeling of with pattern generators usually requires the
manipulation of nonlinear dynamical equations, which is non
trivial again

Shaping Attractor
Landscapes

�

˙ z = α z βz g − y() − z()
˙ y = z

Goal=g

Second order dynamics:

Shaping Attractor
Landscapes

�

˙ z = α z βz g − y() − z()
˙ y = f ?() + z()

Can one create more complex dynamics by�
nonlinearly modifying the simple second�
order system?

Goal=g

Shaping Attractor
Landscapes

�

˙ z = α z β z g − y() − z()
˙ y = α y f x,v() + z()
where
˙ v = α v β v g − x() − v()
˙ x = α xv

f x,v() =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci()2⎛
⎝

⎞
⎠

and x =
x − x0

g − x0

  A globally stable learnable nonlinear point attractor:

Local Linear�
Model Approx.

Canonical �
Dynamics

Trajectory Plan�
Dynamics

Example: A Trajectory with
Movement Reversal

W
i/

 W
j

Example: A Minimum Jerk
Trajectory

0 0.2 0.4 0.6 0.8 1
-5

0

5

10
v

0 0.2 0.4 0.6 0.8 1
40

45

50

55

60
y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
s

0 0.2 0.4 0.6 0.8 1
40

42

44

46

48

50
r

0 0.2 0.4 0.6 0.8 1
-200

0

200

400
vd

0 0.2 0.4 0.6 0.8 1
-20

0

20

40
yd

0 0.2 0.4 0.6 0.8 1
-200

0

200

400
sd

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
rd

speed=1.000000

Learning The Attractor
from Demonstration

  Given a demonstrated trajectory y(t)demo
and a goal g
  Extract movement duration
  Adjust time constants of canonical dynamics to movement duration
  Use LWL to learn supervised problem

  Usually 1-5 learning epochs suffice to get good approximation

�

˙ y target =
˙ y demo

α y

− z = f x,v()

Imitation Learning of a
Tennis Forehand

Note: All 30 joint space trajectories�
are fitted independently

Imitation Learning of a
Tennis Backhand

Limit Cycle Dynamics for
Rhythmic Movement

  A globally stable learnable limit cycle:

Trajectory Plan Dyanmics
z = α z βz g − ym() − z()
y = α y f r,ϕ() + z()

⎧
⎨
⎪

⎩⎪
where

Canonical System
r = α r A − r()
ϕ =ω

⎧
⎨
⎩

Local Linear Models
using van Mises bases

f x,v() =

wibi
Tx

i=1

k

∑

wi
i=1

k

∑
where x =

r cosϕ
r sinϕ

⎡

⎣
⎢

⎤

⎦
⎥

wi = exp di cos ϕ − ci() −1()()

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Example: A Complex
Rhythmic Trajectory

W
i/

 W
j

Imitation Learning of a
Drumming Motion

Imitation Learning of a
Figure-8 Motion

Pattern Generators for Rhythmic
and Discrete Movement

r

Δv1 = t1 − p1, r[]+

˙ v 1 = av −v1 + Δv1()
Δv2 = t2 − p2,r[]+

˙ v 2 = av −v2 + Δv2()
θr = p1,r = −p2,r

˙ θ r = ˙ p 1, r = − ˙ p 2,r

˙ x 1 = −axx1 + v1 − x1()cr + C1,r

˙ y 1 = −ayy1 + x1 − y1()cr

˙ r 1 = ar −r1 + 1− r1()b v1()
˙ z 1 = −azz1 + y1 − z1() 1 − r1()cr

˙ p 1,r = apcr z1 − z2()

˙ x 2 = −ax x2 + v1 − x2()cr + C2, r

˙ y 2 = −ayy2 + x1 − y2()cr

˙ r 2 = ar −r2 + 1 − r2()bv2()
˙ z 2 = −az z2 + y2 − z2() 1− r2()cr

˙ p 2,r = apcr z2 − z1()

Δω1 = A − p1 − p1,r()[]+

˙ ξ 1 = aξ −ξ1 + Δω1()
˙ ψ 1 = −aψψ1 + ξ1 −ψ1 − bζ1 − w ψ 2[]+

+ C1,o()co

˙ ζ 1 = 1
5
−aζζ1 + ψ1[]+ −ζ1()co()

˙ p 1 = co ψ1[]+ − ψ 2[]+()

Δω2 = A − p2 − p2,r()[]+

˙ ξ 2 = aξ −ξ2 + Δω2()
˙ ψ 2 = −aψψ 2 + ξ2 −ψ2 − bζ 2 − wψ 1[]+

+ C2,o()co

˙ ζ 2 = 1
5
−aζζ 2 + ψ 2[]+ − ζ2()co()

˙ p 2 = co ψ 2[]+ − ψ1[]+()θ = p1 = −p2

˙ θ = ˙ p 1 = − ˙ p 2

Discrete Movement

Rhythmic Movement

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

zi
pi
pdi

Example from the Discrete
Pattern Generator

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
vi
xi
yi

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
ri

Discrete Movements at
Different Speeds

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8

Example from the
Rhythmic Pattern
Generator

0 1 2 3 4 5
-0.2

-0.1

0

0.1

0.2
th
et
a r

0 1 2 3 4 5
-1

-0.5

0

0.5

1

th
et
ad

r

