
CS545—Contents XIII 
  Trajectory Planning 

  Control Policies 
  Desired Trajectories 
  Optimization Methods 
  Dynamical Systems  

  Reading Assignment for Next Class 
  See http://www-clmc.usc.edu/~cs545 



Learning Policies is the Goal of 
Learning Control 

  Policy: u t( ) = p x t( ), t,α( )



Dynamic Programming & 
Reinforcement Learning 

Movement
System

Nonlinear
Controller (Policy)

Desired
Behavior u x

  Dynamic Programming 
  requires a model of the movement system 

  Reinforcement Learning 
  can work without models of the movement system 

  Essentials 
  both techniques require to learn a high-dimensional “value function” that 

assesses the quality of an action u in a state x 
  learning the value function is a complex nonstationary, nonlinear learning 

process 
  both methods die the curse of dimensionality 

V = max
u

r x,u( ) + τ ∂V x( )
∂x

f x,u( )⎡
⎣⎢

⎤
⎦⎥

(HJB-Eqn.) 



Desired Trajectories 

  Essentials 
  prescribe a desired trajectory 

  convert desired trajectory into a (time-dependent) control policy, e.g., by PD-
controller 

  Problems 
  Where do desired trajectories come from 
  How to accomplish reactive control 
  How to generalize to new tasks or new situations 

 
θ, θ( )desired = f ξinitial ,ξtarget , t( )

 
u = p x, t,α( ) = kθ θ t( )desired −θ( ) + k θ θ t( )desired − θ( )



Desired Trajectories 
(cont’d) 
  There is a difference between PATH and TRAJECTORY planning 

  A trajectory involves geometry AND time 
  A path involves only geometry 

  Planning can happen either in joint or operational space 

  There is usually an infinity of possible desired trajectories 
  How is the desired trajectory represented? 

  Every point in time? 
  Only start & final point? 
  Via points? 

  Movement Primitives 

xd = g t,α( )
or

θd = f t,α( )



Joint Space Planning 
  What could one plan? 

  Arbitrary trajectories from start to end 
  Trapizoidal (or any aother kind of) velocity profiles 
  Polynomials: 

  1.order:  straight lines 
  2.order:  parabolas   
  3.order:  cubic splines 
  5 order:  quintic splines 
  Interesting:  

  Analyze the shape of the trajectories in position, velocity, acceleration, and 
jerk space. 

  How many constraints are needed to specify a trajectory 



Example:Cubic Polynomial  
  Cubic Polynomial: 

  Given: Start & Endpoint 

  Plan a cubic polynomical through the start and endpoint 
  Two additional constraints are needed, for instance: 

  Determine the coefficients by using 4 boundary conditions, e.g., 

  

q t( )=a0 +a1t +a2t
2 +a3t

3

˙ q t( )=a1 +2a2t +3a3t
2

˙ ̇ q t( )=2a2 +6a3t

qs,qf

˙ q s, ˙ q f    or   ˙ q s, ˙ ̇ q s   or   ˙ q f , ˙ ̇ q f

    

qs =a0

˙ q s =a1

q f =a0 +a1t +a2t 2 +a3t3

˙ q f =a1 +2a2t +3a3t 2



Planning Complex Paths 
  Prescribe a set of via-points 

  Plan simple trajectories between via-points 
  Ensure smooth transitions between trajectory segments 

  E.g., the tangent of two adjacent trajectory segments should 
match 



Optimization Approaches 
to Desired Trajectories 
  Given: 

  “hard constraints”, e.g., 

  “soft constraints”, i.e., an optimization criterion 

  Goal: 
  Find the trajectory that fulfills the hard constraints while 

minimizing (or maximizing) the soft constraint 
  Solution Methods: 

  Calculus of Variation 
  Dynamic Programming 

  qs,qf ,t

 
J = g q, q,…( )

0

τ

∫ dt



Optimization Approaches 
Examples 
  Minimum kinetic energy 

  Results in a quadratic polynomial as solution 

  Minimum Jerk 

  Results in a qunitic polynomial as solution 

  Minimum Torque Change 

  Results in something that does not have an analytical description 

 
J = q 2

0

τ

∫ dt

 
J = u2

0

τ

∫ dt

 
J = q2

0

τ

∫ dt



Operational Space 
Planning 
  All joint space planning methods can also be used in 

operational space 
  Inverse kinematics is needed to convert operational 

space trajectories into joint space 
  The resulting joint space motion is usually quite complex 
  Geometric problems can arise: 

  Intermediate points are unreachable 
  High joint space motion near singular postures 
  Start and goal reachable in different solutions 



Examples of Geometric 
Problems 



Pattern Generators for Desired 
Trajectories 

  Use Pattern Generators to Create Kinematic Trajectory Plans 
  Use open parameters in pattern generator to generate different movement 

durations and target settings 



Pattern Generators for 
Trajectory Planing 
  What is a pattern generator? 

  A dynamical system (differential equation) with a particular behavior 
  E.g.: Reaching movement can be interpreted as a point attractive behavior: 

  What is the advantage of a pattern generator? 
  Independent of initial conditions 
  Online planning 
  Online modification through additional “coupling” terms. i.e., planning 

can react to sensory input 

Target
Speed


 
qd = α qf − qd( )

 
qd = α qf − qd( ) + β qd − q( )



Pattern Generators for 
Trajectory Planning 
  Disadvantages of Pattern Generators 

  Analysis of behavior is non trivial 
  Need to integrate the equation of motion of the pattern generator 

at sufficiently high frequency 
  Exact shape of desired trajectories that are generated by the 

pattern generator are not easy to predict if external coupling is 
added 

  Modeling of with pattern generators usually requires the 
manipulation of nonlinear dynamical equations, which is non 
trivial again 



Shaping Attractor 
Landscapes 

� 

˙ z = α z βz g − y( ) − z( )
˙ y = z

Goal=g


Second order dynamics:




Shaping Attractor 
Landscapes 

� 

˙ z = α z βz g − y( ) − z( )
˙ y = f ?( ) + z( )

Can one create more complex dynamics by�
nonlinearly modifying the simple second�
order system?


Goal=g




Shaping Attractor 
Landscapes 

� 

˙ z = α z β z g − y( ) − z( )
˙ y = α y f x,v( ) + z( )
where
˙ v = α v β v g − x( ) − v( )
˙ x = α xv

f x,v( ) =
w i bi v

i =1

k

∑
wi

i =1

k

∑

wi = exp − 1
2

di x − ci( )2⎛ 
⎝ 

⎞ 
⎠ 

and  x =
x − x0

g − x0

  A globally stable learnable nonlinear point attractor: 

Local Linear�
Model Approx.


Canonical �
Dynamics


Trajectory Plan�
Dynamics




Example: A Trajectory with 
Movement Reversal 
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Example: A Minimum Jerk 
Trajectory 
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Learning The Attractor 
from Demonstration 

  Given a demonstrated trajectory y(t)demo  
and a goal g  
  Extract movement duration 
  Adjust time constants of canonical dynamics to movement duration 
  Use LWL to learn supervised problem 

  Usually 1-5 learning epochs suffice to get good approximation 

� 

˙ y target =
˙ y demo

α y

− z = f x,v( )



Imitation Learning of a  
Tennis Forehand 

Note: All 30 joint space trajectories�
are fitted independently




Imitation Learning of a  
Tennis Backhand 



Limit Cycle Dynamics for 
Rhythmic Movement 

  A globally stable learnable limit cycle: 

 

Trajectory Plan Dyanmics
z = α z βz g − ym( ) − z( )
y = α y f r,ϕ( ) + z( )

⎧
⎨
⎪

⎩⎪
where

Canonical System            
r = α r A − r( )
ϕ =ω

⎧
⎨
⎩

Local Linear Models
using van Mises bases

     
f x,v( ) =

wibi
Tx

i=1

k

∑

wi
i=1

k

∑
where  x =

r cosϕ
r sinϕ

⎡

⎣
⎢

⎤

⎦
⎥

wi = exp di cos ϕ − ci( ) −1( )( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪



Example: A Complex  
Rhythmic Trajectory 
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Imitation Learning of a 
Drumming Motion 



Imitation Learning of a  
Figure-8 Motion 



Pattern Generators for Rhythmic 
and Discrete Movement 

r

Δv1 = t1 − p1, r[ ]+

˙ v 1 = av −v1 + Δv1( )
Δv2 = t2 − p2,r[ ]+

˙ v 2 = av −v2 + Δv2( )
θr = p1,r = −p2,r

˙ θ r = ˙ p 1, r = − ˙ p 2,r

˙ x 1 = −axx1 + v1 − x1( )cr + C1,r

˙ y 1 = −ayy1 + x1 − y1( )cr

˙ r 1 = ar −r1 + 1− r1( )b v1( )
˙ z 1 = −azz1 + y1 − z1( ) 1 − r1( )cr

˙ p 1,r = apcr z1 − z2( )

˙ x 2 = −ax x2 + v1 − x2( )cr + C2, r

˙ y 2 = −ayy2 + x1 − y2( )cr

˙ r 2 = ar −r2 + 1 − r2( )bv2( )
˙ z 2 = −az z2 + y2 − z2( ) 1− r2( )cr

˙ p 2,r = apcr z2 − z1( )

Δω1 = A − p1 − p1,r( )[ ]+

˙ ξ 1 = aξ −ξ1 + Δω1( )
˙ ψ 1 = −aψψ1 + ξ1 −ψ1 − bζ1 − w ψ 2[ ]+

+ C1,o( )co

˙ ζ 1 = 1
5
−aζζ1 + ψ1[ ]+ −ζ1( )co( )

˙ p 1 = co ψ1[ ]+ − ψ 2[ ]+( )

Δω2 = A − p2 − p2,r( )[ ]+

˙ ξ 2 = aξ −ξ2 + Δω2( )
˙ ψ 2 = −aψψ 2 + ξ2 −ψ2 − bζ 2 − wψ 1[ ]+

+ C2,o( )co

˙ ζ 2 = 1
5
−aζζ 2 + ψ 2[ ]+ − ζ2( )co( )

˙ p 2 = co ψ 2[ ]+ − ψ1[ ]+( )θ = p1 = −p2

˙ θ = ˙ p 1 = − ˙ p 2

Discrete Movement 

Rhythmic Movement 
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Example from the Discrete 
Pattern Generator 
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Discrete Movements at 
Different Speeds 

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8



Example from the 
Rhythmic Pattern 
Generator 
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