

#### CS545—Contents XIV

- Interaction Control
  - Compliance
  - Impedance
  - Force control
  - Hybrid control
  - Impedance control
- Sensors and Actuators
- Reading Assignment for Next Class
  - See http://www-clmc.usc.edu/~cs545

#### Example





#### Example





# **Problems of Interaction Control**



- Equations of motion change: Closed loop kinematic chains
- Motion constraints imposed by the environment: Not all movement plans are feasible anymore
- What are the generalized coordinates?
- Planning and execution usually require very high accuracy if only motion control is performed
  - Exact models of the robot are needed
  - Exact models of the environment are needed
- Thus, somehow it is necessary to control the interaction forces



# **Some Technical Terms**

- Stiffness
  - Proportionality constant k that relates a static displacement to the force due to this replacement  $\Gamma = \frac{1}{2} =$

$$F = k\Delta x$$

- Compliance
  - Inverse of stiffness
  - Active compliance (or stiffness)
    - Controlled compliance in response to an external force, e.g., in order to keep the contact force at a certain limit ("actively giving in")
  - Passive compliance (or stiffness)
    - Non-actuated ("internal") tendency of a body to get displaced due to external forces (e.g., mechanical springiness)
- Impedance
  - Dynamic response to an external force due to inertial, friction, and position terms, i.e.,

$$m\ddot{x}_d + b\dot{e} + ke = F$$
 where  $e = x_d - x$ 



#### **Force Control**

- In the direction of the constraint, it is more appropriate to do force control than position control
- A simple example: A spring-mass system



• What we want to control is the force acting on the environment



• Force on the environment:

$$f_e = k_e x$$

- Equations of motion:  $f = m\ddot{x} + k_e x + f_{dist}$
- Reformulate in terms of the variable we want to control

$$f = \frac{m}{k_e} \ddot{f}_e + f_e + f_{dist}$$

• Define the error in force

$$e_f = f_d - f_e$$

• And generate a control law:

$$f = \frac{m}{k_e} \left( \ddot{f}_d + k_{vf} \dot{e}_f + k_{pf} e_f \right) + f_e + f_{dist}$$

• Insert control law in eqns of motion results in the error dynamics

$$\ddot{e}_f + k_{vf}\dot{e}_f + k_{pf}e_f = 0$$



- Problems with the suggested control law:
  - Disturbance force is not known
  - Force sensors are quite noisy, such that the derivatives of sensed forces are hard to obtain
- Dealing with the missing disturbance force:
  - Analyze the control law without the disturbance force:

$$\ddot{e}_f + k_{vf}\dot{e}_f + k_{pf}e_f = \frac{\kappa_e}{m}f_{dist}$$

• Steady state error:

$$e_f = \frac{k_e}{k_{pf}m} f_{dist}$$

 If k<sub>e</sub> is large, as usually the case in many contact tasks, this error can be quite large



• Another control law can improve the steady state error:

$$f = \frac{m}{k_e} \left( \ddot{f}_d + k_{vf} \dot{e}_f + k_{pf} e_f \right) + f_d$$

Insert into equation of motion:

$$\frac{m}{k_e} \left( \ddot{f}_d + k_{vf} \dot{e}_f + k_{pf} e_f \right) + f_d = \frac{m}{k_e} \ddot{f}_e + f_e + f_{dist}$$
$$\frac{m}{k_e} \left( \ddot{e}_f + k_{vf} \dot{e}_f + k_{pf} e_f \right) + e_f = f_{dist}$$
$$\ddot{e}_f + k_{vf} \dot{e}_f + e_f \left( k_{pf} + \frac{k_e}{m} \right) = \frac{k_e}{m} f_{dist}$$

• Thus, the steady state error becomes:

$$e_f = \frac{\frac{k_e}{m}}{k_{pf} + \frac{k_e}{m}} f_{dist} = \frac{1}{\frac{k_{pf}m}{k_e} + 1} f_{dist}$$

• For stiff environments, this is quite an improvement



- Avoiding force derivatives:
  - As we know:  $f_e = k_e x$
  - We can make use of:

$$\dot{f}_e = k_e \dot{x}$$

- This assumes that we have good sensors to obtain the velocity of the endeffector
- The final control law thus becomes

$$f = \frac{m}{k_e} \left( \ddot{f}_d + k_{vf} \left( \dot{f}_d - k_e \dot{x} \right) + k_{pf} e_f \right) + f_d$$

• For static desired contact forces we get:

$$f = m \left( -k_{vf} \dot{x} + \frac{k_{pf}}{k_e} e_f \right) + f_d$$

Note that we still need to know k<sub>e</sub>

# Force Control In A Complete Robot



- For force control, an operational space controller needs to be employed that includes inverse dynamics compensation:
  - The general rigid body dynamics equation is:

#### $B(q)\ddot{q}+C(q,\dot{q})\dot{q}+G(q)=u$

• Try an inverse dynamics control law

#### $\mathbf{u} = \mathbf{B}(\mathbf{q})\mathbf{y} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) + J^{T}(\mathbf{q})f$

- But what is **y**? There is no desired acceleration term!
- Solutions to this problem:
  - Set y to zero
    - This should not matter too much since the interaction motion is usually rather slow or almost static
  - Employ more complex operational control schemes (S&S, Ch.7.4)

## **Hybrid Control**



- The endeffector is usually not constraint in all direction
  - Solution:
    - In task space, use force control in the direction of the constraints
    - Use position control in the unconstrained direction
    - Note: need to transform task controller signals into operational space
  - Example:
    - Wiping clean a window

#### **Impedance Control**



 Goal: Control the dynamic response of the endeffector according to a pre-specified second order dynamics system

 $m\ddot{x}_d + b\dot{e} + ke = F$  where  $e = x_d - x$ 

- This mean we want to make the robot behave as if it were a different dynamical system
- A possible control law is:

$$\mathbf{u} = \mathbf{B}(\mathbf{q})\mathbf{y} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) - \mathbf{B}^{-1}(\mathbf{q})J^{T}(\mathbf{q})f_{e}$$

• Where

$$\mathbf{y} = J^{-1}(\mathbf{q})\mathbf{M}_{d}^{-1}(\mathbf{M}_{d}\ddot{\mathbf{x}}_{d} + \mathbf{K}_{D}\dot{\mathbf{e}} + \mathbf{K}_{P}\mathbf{e} - \mathbf{M}_{d}\dot{J}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}})$$

Which results in the desired error dynamics:

$$\mathbf{M}_{d}\ddot{\mathbf{e}} + \mathbf{K}_{D}\dot{\mathbf{e}} + \mathbf{K}_{P}\mathbf{e} = \mathbf{M}_{d}J^{-T}(\mathbf{q})\mathbf{B}(\mathbf{q})J^{-1}(\mathbf{q})f_{e}$$



#### **Sensors and Actuators**

- Elements of an robotic system
  - Power supply
  - Power amplifier
  - Servomotor
  - Transmission
  - sensors
- Servomotors:
  - Pneumatic
  - Hydraulic
  - Electric motors
- Transmission
  - Gears
  - Pullies and belts or chains
  - No (direct drive)



#### Sensors

#### • Sensor types

- Tactile sensors
- Proximity sensors
- Range sensors
- Vision systems
- Position sensors (linear and rotary)
- Velocity sensors (linear and rotary)
- Acceleration sensors (linear and rotary)
- Force sensors (linear and torque)
- Analog and Digital sensors exist