CS545—Contents XVIIi

e Kalman Filtering

The Kalman filter framework
Derivation of Kalman filter update equations

e Reading Assignment for Next Class

See http://lwww-clmc.usc.edu/~cs545
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When to use a Kalman
Filter

Eliminate noise in measurements

Generate non-observable states (e.g., velocities from
position signals)

For prediction of future states (systems with time delays)
Optimal filtering



The Kalman Filter
Framework (1960)

e Given:
o A discrete stochastic linear controlled dynamical system
x""=Ax"+Bu" +w" —

e A measurement function
y'=Cx"+v

Model uncertainty
n ——— Measurement noise

e Some knowledge about the additive noise
E{w} =0, E{v} =0, E{WWT} =Q, E{VVT} =R, E{WVT} =0

e Goal:
o Find the best (recursive) estimate of the state x of the system.



Properties of the Kalman
Filter

e Allows to estimate past, present, and future states

e Requires a model of the system dynamics (at least
approximate)

e Much better than digital filters (why?)
e The Kalman filter is optimal for linear systems

e Extensions to nonlinear systems exist:
“Extended Kalman Filter”

e The Kalman Filter can be calculated in the same way as
gains for Linear Quadratic Regulator problems.



In Which Sense is the
Kalman Filter Optimal?

e Assume an a priori estimate of the state x at step n given
the knowledge of the process dynamics and the previous
state estimate at n-7:

X" = AX""' +Bu""'

e Additionally we measure the output of the process at n:
y’
e How can we optimally (linearly) combine the estimate

and measurement to obtain the best reconstruction of

/

This is (one form) of the famous Kalman update equation!



In Which Sense is the Kalman
Filter Optimal? (cont’d)

e The K matrix is the open parameter in the Kalman filter.

e \We want to choose K such that we minimize the a
posteriori estimation error (in expectation):

l.e., minimize the expected error covariance
n nT
E{e e }

The Kalman filter gains are derived by minimizing the posterior error
covariance, resulting in:

K" =P"C’(C'P"C" +R)

~nnT

with: ¢ =x"—-X" and P" = E{e ¢ } (prior error covariance)



Derivation of Kalman Gains
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Derivation of Posterior
Covariance Update
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Derivation of Prior Covariance g¢»%
A
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Summary: The Discrete
Kalman Filter Equations

e The time update equations:




Discussion

e \What happens if the a priori estimate of the process
noise is zero?

K=0

e \What happens if the measurement noise is zero?

K=C"
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e Estimate a constant from noisy data:
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Figure 3-1. The first simulation: R = (0.1)% = 0.01. The true value of the
random constant x = —0.37727 is given by the solid line. the noisy mea-

surements by the cross marks, and the filter estimate by the remaining curve.
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Example (cont’d)

e Estimate a constant from noisy data:
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Figure 3-2. After 50 iterations, our initial (rough) error covariance P
choice of 1 has settled to about 0.0002 (Volts®).



