CS545—Contents XX

e Case Study: Gravity Compensation with the Sarcos

Dexterous Master Arm

A Gravity Compensation Control Circuit
Primary goals and subgoals
Math and Algorithms
Automatic C-code generation with mathematica

How to embed the controller in the VxWorks environment
Spinal-Cord: the low level I/O and negative feedback processor
Interprocessor communication (semaphore, shared semaphores, shared
objects)
Parietal-Cortex: the task level control processor
Creating a task program

e Reading Assignment for Next Class
See http://www-clmc.usc.edu/~cs545

Goals of Gravity
Compensation

e Use the robot arm as a force reflecting manipulandum

Eliminate the weight due to gravity by supplying the appropriate
feedforward commands at every moment of time

Afterwards, impose (program!) a virtual environment:
E.g., a “honey sphere” (in Cartesian Space!)
Inside of the sphere, impose viscous friction opposing the movement
Outside of the sphere, no viscous friction

e How dangerous is it to program this task?
e How would you do it?

Theory Part |: Gravity
Compensation

e At every time step:
Read current positions from sensors
Calculate inverse dynamics feedforward torque

Out1 In1 47

Inverse Static

Computation
. pf+
desired[— |+
: - ——Pmni outt —p{+ [Robot)
desired state >
Sum? Sum3

PD Controller

Control Loop on VxWorks

Cameras

Vision Servo

Camera->Body Map
Filtering

Y

X X, X X, XX,

Y
i ¥ U, \ & u| Robot
» Trajectory e Z\ : _‘

Desired | Planning 00 N7 + Animation |
Behavior ?

noT

Task Servo N0 Motor Servo

Tu,.u

Gravity Compensation (cont’dj: 5

e The Gravity Compensation Control Law

B(q)q+C(q,9)q+G(q) =
B(q)d+C(q,9)q+G(q)=G(q)+K,(q,—q)+K,(q, — q)
T=G(q)+ KP(qd — q)"' KD(qd - (1)

*What is the desired position and velocity for the PD
controller?

*What are the PD gains?

Gravity Compensation
(cont’d)

e How to obtain G(q)?
Lagrange
Newton-Euler
e How to get the open parameters in G(q)?
Need mass and center of mass
Measure

Estimate
Estimate from data with regression methods

Automatic Generation of
Inverse Dynamics

e Use Mathematica
Most important: Mathematica uses shift-return to execute
commands

The relevant files: RigidBodyDynamics.m and arm2D.dyn will be
made available on the web in HW IV.

Set the current working directory to the directory where the file RigidBodyDynamics.m 1s:
SetDirectory["Vangogh:Users:sschaal :current:courses:(S545:Lecture_XX"j1;
Load the Rigid Body Dynamics Package:
SetDirectory["ControlTheory"];
<<RigidBodyDynamics.m

Reset the path to the current directory

ResetDirectory|];

Automatic Generation of
G(q) (cont;d)

ResetDirectoryj];

Get some help mformation about this package:

?InvDyn

InvDyn[infile, outfile,gravity] derives the inverse dynamics equations from the specification
in infile and dumps C-code output to outfile. The gravity vector in world coordinates is given (
note that the gravity is supposed to be given WITH the appropriate sign!). The following rules apply:
-input files are in Mathematica notation and can use NMathematica symbolic math
-joints in the input file are numbered by integer numbers. DO NOT use the number B as it is used internally to
refer to the base coordinate system. The numbers provided will be used as indices for arrays in the C-Code.
-branches are permitted, but no loops.
-each joint must rotate about one defined axis in its local coordinate system
-each local coordinate system has is origin at the joint
-the inertia tensor is in the center of mass coordinate system
-rotation angles for coordinate transformation are alpha (rotate about x-axis),
beta (rotate about y-axis), gamma (rotate about z-axis) in this sequence, and in Euler angle notation
-do NEVER use underscores and dashes in variable names in the input file (Mathematica syntax)
-the rotation angles to get to the next local coordinate
systems should be numerical (otherwise too much code, although this could be made more efficient)

Here comes a quick example how to use these functions. "arm2D.dyn" is a special mput file
that the user needs to generate manually. "arm2D" is the prefix that all generated C-code
files will have. {0,0,G} 1s the direction of the gravity vector.

InvDyn["arm2D.dyn", "arm2D", {0, 0, G}];

The Structure of the Input
File (*.dyn)
{

{jointID, {ID=1}},

{jointAxis,{0,0,1}},

{translation, {0,0,0%}},
{rotationMatrix,{0,0,0}},

{successors, {2}},
{inertia,{{j111,3j112,5113},{j112,5122,3123},{5113,j123,5133}}},
{centerMass, {xcml,ycml,zcml}},

{mass, {m1}},
{jointVariables,{thl,thld,thldd,torquel,texl1}},
{fextForce,{0,0,0,0,0,0}}

¥

{

{jointID, {ID=2}},

{jointAxis,{0,0,1}},

{translation, {0,-11,0}},
{rotationMatrix,{0,0,0%}},

{successors, {}},
{inertia,{{j211,3j212,75213},{j212,3222,3223},{3213,j223,3233}}},
{centerMass, {xcm2,ycm2,zcm2}},

{mass, {m2}},

{jointVariables, {th2,th2d,th2dd,torque2, tex2}},
{extForce,{0,0,0,0,0,0}}

¥

For Gravity Compensation:
thd*=thdd*=0!

{jointID,{ID=1}},
{jointAxis,{0,0,1}},

{translation, {0,0,0}},
{rotationMatrix, {0,0,0}},
{successors, {2}},
{inertia,{{j111,3j112,5113},{j112,5122,3123},{7113,j123,5133}}},
{centerMass, {xcml,ycml,zcml}},
{mass, {ml1}},
{jointVariables,{th1,0,0,torquel,0}},
{extForce,{0,0,0,0,0,0}},

¥

{

{jointID,{ID=2}},
{jointAxis,{0,0,1}},

{translation, {0,-11,0}},
{rotationMatrix, {0,0,0%}},
{successors, {}},
{inertia,{{j211,7212,7213},{j212,7222,3223%},{j213,j223,j233}}},
{centerMass, {xcm2,ycm2,zcm2}},
{mass, {m2}},

{jointVariables, {th2,0,0,torque2,0}},
{extForce,{0,0,0,0,0,0}}

hy

The Output Files of InvDyn:

o See file arm2D InvDyn math.h
e See file arm2D InvDyn declare.h
e See file arm2D InvDyn functions.h

e See file arm2D gcomp InvDyn math.h
e See file arm2D _gcomp InvDyn_ declare.h
e See file arm2D gcomp InvDyn_functions.h

What to do with these
files?

void

(\ IS 2 N
0 h‘ s

et ate &
%Sﬁe’&‘
Q\\\

compute_gcomp(double *th, double *mass, double *xcm, double *ycm, double *zcm, double *torque)

{

#include "arm2D_gcomp_InvDyn_declare.h"

double th1,th2;

double xcm1,xcm2,ycm1,ycm2,zcm1,zcmZ2;

double m1,m2;
double 11=1.0;

th1=th[1];
th2=th[2];
xcm1=xcm[1];
xcm2=xcm[2];
ycm1=ycm[1]
ycm2=ycm[2];
zcml=zcm[1];
]
]
]

)

zcm2=zcm[2
m1 = mass[1
mZ2 = mass[2

H
H

#include "arm2D_gcomp_InvDyn_math.h"

torque[1] = torquel;
torque[2] = torque?2;

}

Some Shortcuts to Make
Things Easier

{

{jointID, {ID=1}},

{jointAxis,{0,0,1}},

{translation, {0,0,0%}},
{rotationMatrix,{0,0,0}},

{successors, {2}},
{inertia,GenInertiaMatrixA["Inertia",ID]},
{centerMass, GenCMVectorA["cm",ID]},
{mass,GenMassA["m",ID]},
{jointVariables,{th[[1]],0,0,torque[[1]],0}},
{extForce,{0,0,0,0,0,0}}

¥

{

{jointID, {ID=2}},

{jointAxis,{0,0,1}},

{translation, {0,-11,0}},
{rotationMatrix,{0,0,0%}},

{successors, {}},
{inertia,GenInertiaMatrixA["Inertia",ID]},
{centerMass, GenCMVectorA["cm",ID]},
{mass,GenMassA["m",ID]},

{jointVariables, {th[[2]],0,0,torque[[2]],0}},
{extForce,{0,0,0,0,0,0}}

}

'/‘J“fi’é:‘ :
74

&?.' \‘/.'f N
The C-Program becomes [y
|

void
compute_gcomp(double *th, double *m, double **cm, double *torque)

{

#include "arm2D_gcomp_InvDyn_declare.h"

#include "arm2D_gcomp_InvDyn_math.h"

}

How To Program The
“Honey Sphere”?

e In Joint Coordinates:

Within a certain joint angle range of each DOF, add a negative
component to the feedforward command proportional to the
current DOF velocity

e In Cartesian Coordinates:
Check whether the endeffector is in the sphere

If yes, calculate viscous friction force according to endeffector
velocity

Convert viscous force into joint torques with Jacobian Transpose

A “cheap version”: turn on viscous force in joint space if the
endeffector is in the Cartesian sphere

