

CS545—Contents V

• Case Study: An Artificial Eye System

- Introduction to Oculomotor Control
- The model of the dynamics
- Gaze stabilization
- The vestibulo-ocular reflex (VOR)
- The optokinetic reflex (OKR)
- Delays
- Controlling the VOR and OKR

• Reading Assignment for Next Class

See http://www-clmc.usc.edu/~cs545

Introduction to Oculomotor Control

Goals

- Get visual input from the entire world with high resolution foveal vision and low resolution peripheral vision
- Behaviors
 - Move the fovea to interesting targets (saccades)
 - Stabilize target on retina (VOR,OKR)
 - Adjust focal length (accommodation)
 - Enable stereo vision (vergence)
 - Avoid workspace boundaries (nystagmus)

Problems

 Delays from visual processing are about 100ms in humans, about 30-100ms in artificial systems

Example Oculomotor Systems

• The human eye

• Vision Heads

Example Oculomotor Systems

• Vision Heads

Case Study: The VOR and OKR

A model of the eye system

• Assumptions:

- System is a linear second order system
- Eye motors are very strong (inertial loads are small)
- Independent control of pan and tilt degree-of-freedom, thus:

Gaze Stabilization

Goal: keep the eye on the target in case of visual and head perturbations!

PD Control for the VOR & OKR

Performance of PD Control

• Step Input:

How to Improve Performance?

- Integrator
- Feedforward Control
- Delay Compensation

