_ ALDEBI\RAN

Aldebaran Robotics’ NAO



Who we are, in a nutshell

Founded in 2005, European company based in Paris

Goal : spread humanoid robots for :
* Personal Assistants, home companion
 Research and Education

900 NAOSs sold in 30 countries
World leader in BtoB humanoid robotics

= Working closely with R&D labs and Educational
Institutions



NAO project: design o

January 2005 March 2005 July 2005 September 2005 December 2006 June 2007




What can NAO do?

Move Sense

— 2 cameras

— 4 microphones

— 8 FSRs, 2 Bumpers
— DCM

— 25 Degrees of Freedom

— Smooth and precise
coreless motors (Maxxon)

— Controlled with software

— 2 Sonars
- / _
4 - ) : h
Communicate « Think »
— 2 loudspeakers Geode 500 Mhz CPU
— Multiple LEDs 256 MB SDRAM
— Tactile sensors, prehensile 2 GB Flash Memory
hands Software suite + SDK to
— Infrared sensors
—  WIFI connection program Nao
- / _




Inside NAO

- Head with onboard - Magnetic Rotary Encoders - Gears and Force Sensing

computer, Leds and 2 and motor controller Resistors

cameras

- Chest electronic board with -

sensors and the ARM9 BINE
“&),"

tfﬂ T,

> P
-
o



Our Software Suite

4 N .
More than a software suite, a =

Epre—

comprehensive programming = :

s environment m Monitor

* Feedback of what NAO i
seeing and feeling

* Ergonomic interface to
access the data from the ro

{
|

|

il
i

sensors
| ED sox
9 NAOsim « Embed modules you hav
+ Ergonomic and user- created into your robot in or
friendly interface + Official simulator for NAO to create elaborate behavic
- * Quickly test new robotic for NAO
 Drag and drop behavior behaviors & licati « Compilation and debugc¢
boxes in the flow diagram ehaviors & applications P 9¢

tools.

o




Programming NAO

Many possible ways to access NAOqi APls :

e T N

| p .
Choregraphe im & e C‘V{ Eﬁg’?n code running locally on the e
D. Communications with the robot

be slow.

Python = - may .
URBI : &e I Scite...

'?'EE -

P Visual Studio
& e C:g 2005/2008,

= )

Xcode, GCC...

C++

Cross compilation available on

s
,m & Linux (or Linux virtual machine) Eclipse

Real-time is possible

.NET @. e Tools: Visual Studio
o=




Standard Platform for n o

350 teams,
multiple
leagues, +3000

each team AIBO was the

uses exact standard
same platform until

hardware 2006

24 teams from 18 countries &
used NAO during RoboCup 2010 in Singapore

v
-




Laser Head

Removable « Special head with
door
Hokuyo Laser Scanner
URG-04LX Laser ’\-
Detection range 0.02 to approximately 4m X °
Scan angle 240° , '
Scan time 100msec/scan (10.0Hz) 'K . y
Resolution 1mm :_,4 -
Interface USB 2.0, RS232

Removable

L aser Perfect for mapping, planning,

localization




 Ambitious
research project

Develop a
humanoid robot
which can serve
as a Personal
assistant

* Prototype due to
Spring 2011

= ALDEBARAN
N

¥ fledeFrance

MAIRIE DE PAR|

C £

[ €






Our Offer

A full range of
products

\f';‘t"

A &56 A whole

1 Programmir
i 2 o Environmel
- soisan

STLITITR ten

Dynamic community of
users




A dynamic community of users

NAO Academia, dedicated to NAOshare

NAO users Web-based sharing applicatior
of content related to NAO

= ALDEBARAN [
VA FRebokoo, Commenty P =

| ogroems svetem s dont
Woderators! suppert

[ Eomettien ot cros comptoton
Hoderators. sveert

S Rep—

B

A dedicated forum: = = =
+ Community: be in touch with other NAO owners
» Support: talk with Aldebaran Robotics Support and R&D Online Documentation
teams



(- ‘
Thank you!

...and see you soon

o )




Autonomous and Mobile Robotics
Prof. Giuseppe Oriolo

Introducing NAO

(slides prepared by Antonio Paolillo)

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

SAPIENZA

UNIVERSITA DI ROMA




hardware

* made by the french company aldebaran
* 25 degrees of freedom

* height = 57 cm

* weight = 4,3 kg

+ ATOM Z530 1.6GHz CPU | - \
+ | GB RAM, 2 GB flash memory oL ’ﬁj 3.
* wi-fi connectivity and ethernet port ’/

* linux 32 bit with NAO OS (OpenNAOQO)

* fully programmable (C++ for example) A

L

e supported by a software framework: naoqi-

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo) 2



hardware

NAO is equipped by a long list of sensors:
* 2 loudspeakers

* 4 microphones

* 2 CMOS digital cameras (30Hz)
* LEDs

* encoders to the joints (100Hz)

* gyrometers and accelerometers
* 2 bumpers

* 2 sonars

* 2 infrareds

* tactile sensors

naogqi provides APIs for the motion and sensing

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)




software framework: naoqi

* naogqi is a robotics software framework which allows:
* parallelism
* synchronization
* events
* resources

* modular structure
* each module has a functionality
e several modules can communicate each other

* software communication is possible thanks to
* broker
* proxy

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



broker

MainBroker
C O COHCD MainBroker
— = — COIDECTDREEED
/ \ CALSensors) ( ALLeds) (ALLogger>
Bmkerb BmkerQC) (ALLaser) (ALFsr> (ALVideo)
) COCD

* it’s a binary which runs independently and is attached to an IP address
* run on the robot or/and on a computer

* a set of brokers can be structured as a tree

* an application can be made by more brokers (to overcome
computational problems)

e functionalities of each broker are given by modules

* each module has special methods (API)

* broker manages messages among modules

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



proxy

MainBroker
MODULE MODULE
(ALl\-v'Iemory (ALMotion

BIND METHOD
(API)
setAngles()

BIND METHOD
(APT)
getData()

R Brokerl
\_/ MODULE
local call ( Modulel
BIND MIiTH()IS
(APT)
methodl1()
remote call S —

* it allows to use part of code implemented in other
modules easily
* it is possible to call methods of a module which
* belongs to the same broker (local call)
* belongs to another broker (remote call)

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



low level programming

*naoqi APl use is recommended by Aldebaran (and it is
very simple!)

* but, in order to have:
* direct access to the robot devises
* fast access to the memory
e fast execution of the commands
it is needed to program the robot at low level

*low level programming is more laborious but
allows an absolute control of the robot

* DCM (Device Communication Manager) used

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



device communication manager

Actuators
orders

A

Sensors values

>

ALMemory|<€

Sensors
update

MODULES
UPPER LEVEL

Actuators

DCM

/
\

e—77

(O

DEVICES SUBDEVICES
LOW LEVEL

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo) 8



nao programming

* how to create a naoqi module from scratch

* use the qgibuild tool

* you can generate automatically a ready made module
* chose name module

* write some code

compile or cross-compile using cmake
* compilation = creation of an executable (remote module)

* cross-compilation = creation of a library (local module)

* load the module in naogqi

* if it is a library, it has to be added in the autoload.ini file
* how to launch the module

* executable:./module-name --pip <IP> --port <PORT>

library: automatically launched at naoqi start-up.

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



launch of executable

Japplication Japplication --pip “robot1 IP”
applicatio
n e w’
naoqi on )
computer — | naogi on
(simulated robot) | real robot
Japplication --pip “robot2 IP” ‘(({\’
4( g\u naogi on
[] MainBroker A g real robot
[ 1 my_broker oz 2

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo) 10



an example

ALCALL int _createModule( AL::ALPtr<AL::ALBroker> pBroker )
{

// init broker with the main broker instance

// from the parent executable

AL::ALBrokerManager::setInstance(pBroker->fBrokerManager. lock());

AL::ALBrokerManager::getInstance()->addBroker(pBroker);

AL::ALModule::createModule<modulel>( pBroker, "modulel" );

return 0;

void modulel::my_method(){

AL::ALMotionProxy =*motion

motion->walkTo(0.5,0.0,0.0);

motion->setAngles ("HeadYaw",0.4,0.2);

MainBroker

MODULE
(ALMemory

BIND METHODS
(API)
getData()

local call

BIND METHODS

NAOQI IP
NAOQI PORT

MODULE
(ALMotion

(API)
set Angles()

new AL::ALMotionProxy('"127.0.06.1",9559);

remote Calls\ \

Brokerl |

MODULE
modulel

BIND METHODS
(API)
my_method(

PC IP
PC PORT

PARENT IP

creation of an executable which make the robot walking and

moves the yaw joint of the head

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)




an example

ALCALL int _createModule( AL::ALPtr<AL::ALBroker> pBroker )
{

// init broker with the main broker instance

// from the parent executable

AL::ALBrokerManager::setInstance(pBroker->fBrokerManager. lock());

AL::ALBrokerManager::getInstance()->addBroker(pBroker);
AL::ALModule::createModule<modulel>( pBroker, "modulel" );

return 0;

void modulel::my_method(){

AL::ALMotionProxy =*motion
motion->walkTo(0.5,0.0,0.0);

motion->setAngles ("HeadYaw",0.4,0.2);

NAOQI IP
NAOQI PORT

MainBroker

MODULE
(ALMemory

BIND METHODS
(API)
getData()

MODULE
(ALMotion

BIND METHODS
(API)
set Angles()

local call

new AL::ALMotionProxy('"127.0.06.1",9559);

remote calls

Brokerl

MODULE
modulel

BIND METHODS
(API)
my_method(

PC IP
PC PORT
PARENT IP

| . instantiation of the new module in 2 new broker created

as ah instance of the main broker

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo) 12



an example

ALCALL int _createModule( AL::ALPtr<AL::ALBroker> pBroker )

{
// init broker with the main broker instance
// from the parent executable
AL::ALBrokerManager::setInstance(pBroker->fBrokerManager. lock());
AL::ALBrokerManager::getInstance()->addBroker(pBroker);

AL::ALModule::createModule<modulel>( pBroker, "modulel" );

return 0;

void modulel::my_method(){

AL::AlLMotionProxy *motion = new AL::AlLMotionProxy("127.0.0.1",9559); ( modulel

motion->walkTo(0.5,0.0,0.0);

motion->setAngles ("HeadYaw",0.4,0.2);

MainBroker o
MODULE
(ALMemory

BIND METHODS
(API)
getData()

MODULE
(ALMotion

BIND METHODS
(API)
set Angles()

local call

remote calls\ \

Brokerl |

MODULE

BIND METHODS

(API)
PC IP my_method(
PC PORT
PARENT IP

instantiation of a proxy to ALMotion module.

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



an example

ALCALL int _createModule( AL::ALPtr<AL::ALBroker> pBroker )
{

// init broker with the main broker instance

// from the parent executable

AL::ALBrokerManager::setInstance(pBroker->fBrokerManager. lock());

AL::ALBrokerManager::getInstance()->addBroker(pBroker);
AL::ALModule::createModule<modulel>( pBroker, "modulel" );

return 0;

void modulel::my_method(){

AL::ALMotionProxy =*motion
motion->walkTo(0.5,0.0,0.0);

motion->setAngles ("HeadYaw",9.4,0.2);

NAOQI IP
NAOQI PORT

MainBroker

MODULE
(ALMemory

BIND METHODS
(API)
getData()

MODULE
(ALMotion

BIND METHODS
(API)
setAng

local call

new AL::ALMotionProxy('"127.0.06.1",9559);

remote calls\ \

Brokerl |

MODULE
modulel

BIND METHODS

PC IP
PC PORT
PARENT IP

remote calls to ALMotion APl methods

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



an example

MODULE
(ALMemory

BIND METHODS
(API)

MainBroker

NAOQI IP
NAOQI PORT

MODULE
(ALMotion

BIND METHODS
(API)

ALCALL int _createModule( AL::ALPtr<AL::ALBroker> pBroker )

{

I/
I/
AL
AL

AL

init broker with the main broker instance
from the parent executable

: :ALBrokerManager::setInstance(pBroker->fBrokerManager. lock());

: :ALBrokerManager::getInstance()->addBroker(pBroker);

: :ALModule: :createModule<modulel>( pBroker, "modulel" );

getData()

local call

set Angles()

return 0;

void modulel::my_method(){

AL::ALMotionProxy =*motion

motion->walkTo(0.5,0.0,0.0);

new AL::ALMotionProxy('"127.0.06.1",9559);

motion->setAngles ("HeadYaw",0.4,0.2);

4.

launch the executable

remote Calls\

Brokerl |

MODULE
modulel

BIND METHODS
(API)
my_method(

PC IP
PC PORT
PARENT IP

./module —--pip <IP> —--port <PORT>

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)




how to see the output

choregraphe webots

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)

b
‘AaF
VY.

e J)'m™

Wl
‘ |
g) 3
“"’";.—r

real robot



choregraphe

® Choregraphe File Edit Connection Behaviors View Help L El ™ 4« = U8 37031 venl942 Q
®NO

p——— Untitled - Choregraphe =
O E @ € G0 x Al @

Box List ©0 O—I oot o Nao 3D

File

[ defautt-| Search |-

) Data Edit ~
(] Flow Control

©3) LEDs

L Math

' Divide

4 vYVYyyYy

%5 Multiply
@5 Random Float m
@5 Random Int.
v () Motions
v () Animations
}F Hello
\
/F; Wipe Forehead
» [ ] Dances
A Endess Wak

»

»‘ﬁ\ Hand
o* Set Stiffness

k. SitDown

. FPS :40.0
Iﬁ\ Stand Up

/'\ Wak Toward L ﬁ Basics
o
B
=

» [ Sensors :

v
- b Tawnelnban

Wak To: M
Make NAO walk to a configured point o™ nit
relative to its cument location.

&

4 >

Stand

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo) 17

| = = BEIE




ball tracking

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



ball tracking

ball
motion
ball-robot
- >+ relative motion
robot velocities
P> robot v, w robot
— | control P motion o
r-—— - - -"- - - - - - - - - - - - - - - - - - - - - - "=-=-7 |
| ball offset in the |
I pan/tilt angles image plane . . |
! P, Y camers S T §y 1mage acquisition |
' tracking |[“® " .
| & post-processing |
| |
| |

moving camera system used as a sensor

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)



ball tracking

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)

20



ball tracking

Oriolo: Autonomous and Mobile Robotics - Biped Robots (by A. Paolillo)

21





