
CS545—Lecture SL
l  History: From vxWorks to SL
l  Simulation components

l  multi processing, multi-threads
l  configuration files to setup a robot (similar to URDF)
l  Featherstone Rigid-Body Dynamics
l  Contact dynamics from penalty methods with constraint contact points

l  Real-Time components
l  RTOS Xenomai interface

§  RTNET, RT-USB, RT-CAN, Analogy
l  ROS interface

l  Examples applications
l  Pros, Cons, Future
l  Data Visualization

l  CLMCPLOT in Matlab

l  A Programming Example

From vxWorks to SL

l  Originally created as control software for multi-processor real-time control using vxWorks
(~1994 at MIT, with Chris Atkeson)	

VxWorks: A Professional
RTOS for Control
l  What does VxWorks do?

l  Offers a development environment on a host computer
l  Offers a UNIX-like real-time operating system on the targets
l  Integrates target and host development smoothly
l  Allows multiple targets
l  Allows target communication and memory sharing
l  Integrates the system smoothly into a TCP/IP computer network
l  Guarantees real-time performance (preemptive priority

scheduling, intertask synchronization, interrupt handler, memory
management)

l  Allows NFS mounting and normal use of UNIX file systems

A Typical Robot Environment
with vxWorks and a VME bus

Robot	

Host Computer	

(rubens.usc.edu)���
Sun Solaris 2.8	

VME-Bus	

Eight PPC 	

MVME 2700 Targets ���
(vxWorks)	

Bus master���
(brainstem.usc.edu)	

Motor-Servo���
(spinal-cord.usc.edu)	

Task-Servo���
(premotor-cortex.usc.edu)	

AJC-Bus	

Ethernet	

VME	

Backplane	

Parallel	

I/O	

“Analog	

Wires”	

VME	

Backplane	

What is SL?
l  SL := Simulation Lab
l  Goal: Identical software running physical simulations and

actual robots
l  Design Criteria

l  Fast (super real-time in simulation) and Real-time (for actual robot)
l  Physics simulations and many kinematics and rigid body dynamics

functions
l  Multi-processing, multi-threading
l  Visualization tools
l  Easy to reconfigure for different robots
l  Keep the end-user away from complex programming
l  Runs on Unix systems and RTOS Unix systems
l  Minimal dependence on external software packages
l  Interfaces to anything you want (e.g., ROS)

Examples of SL Control
Systems

•  Some Key Points of SL:	

•  Originally developed as multi-processor real-time control software

using vxWorks (~1994 at MIT)	

•  Extended starting 1996 be add a physical simulator with the goal to

have exactly the same simulation and real-time control interface	

•  Since 2008, real-time version uses open-source Xenomai (hard real-

time OS) on Ubuntu Platforms instead of vxWorks	

•  Used by various partner labs, including CMU, ATR, IIT, ETH, TU

Darmstadt, Max-Planck Tübingen, U. Birmingham, and others.	

Control Loop Over Multiple
Processes in SL

Simulation Components
of SL

Simulation Components
of SL
l  Multi-processing, multi-threading, shared

memory
l  in essence, we mimicked a multi-processor vxWorks

systems, which now maps well onto multi-core
architectures

l  runs frequently significantly faster than real-time
l  Featherstone Algorithms

l  All key Featherstone algorithms implemented
(Newton-Euler ID, Composite Inertia ID, Articulated-
Body FD, Composite Inertia FD, fixed-base and
floating-base)

l  Input: configuration files that describe forward
kinematics tree

l  Mathematica programs convert configuration files to
C-files

l  We have full access to dynamics/kinematics and
change anything

l  Contact Dynamics
l  Penalty methods based on contact points
l  Contact points have constraints to allow realistic

friction, sliding
l  Various contact models are possible
l  Simple objects in the environment

Simulation Components
of SL

l  Programming
l  mostly programmed in C/C++
l  ROS interface (Peter Pastor & Mrinal

Kalakrishnan)
l  users can overwrite most code with

local function
l  rather lean, simple C-libraries
l  hardly any dependencies on non-

standard external libraries (has been
compiling for 15 years without
problems on Macs, Linux, Dec-Alphas,
Solaris, etc.)

l  supports all Unix flavors, but not
Windows

l  Documentation
l  oh well ...

l  http://www-clmc.usc.edu/Resources/Details?id=10259

Example: DRC Task

Example: DRC Task

Real-Time Components
of SL
l  We Switched to RTOS Xenomai a Few Years Ago

l  Dual kernel Ubuntu patch
l  guaranteed hard real-time when programmed correctly
l  real-time drivers include

§  CAN bus (RT-CAN)
§  Ethernet (RT-NET)
§  USB (RT-USB)
§  Data Acquisition (Analogy)

l  Works well with ROS through Interface Process
l  Computer Hardware needs to be matched to Xenomai and

peripheral boards
l  The user code is identical with simulation code, just real-time

requirements (no disk access, printf, etc., in real-time threads)

Examples

Pros, Cons, Future
l  Pros

l  simple, lightweight
l  the same software for real-time control and simulation
l  rapid setup of new robots (days to a week at most)

l  Cons
l  should be upgraded to newer software engineering (C++)
l  need better documentation
l  physical contacts based on penalty methods are painful

l  Future
l  EIGEN to create Featherstone algorithms?
l  combine Featherstone for RBD with something else for contact

dynamics
l  update of user interface
l  maybe RT patch instead of Xenomai?

Data Visualization

Data Visualization
l  Visualization and debugging tools are CRTICALLY important

when working with robot
l  SL has

l  Graphics Windows
l  A real-time Oscilloscope
l  CLMCPLOT, a Matlab data visualization

l  Collects select variables in real-time into a memory buffer
l  Allows saving memory buffer to file
l  Visualization in a special Matlab program called CLMCPLOT

Typical Directory Structure
of an SL End-User
l  naoUser/

l  Makefile
l  src/
l  prefs/

l  task_default.script
l  task_sample.script
l  task_default.osc
l  default.sine
l  default_script
l  …

l  config/
l  x86_64mac
l  x86_64
l  x86_64xeno

A Data Collection Script:
task_default.script
R_SFE_th	

R_SFE_thd	

R_SFE_thdd	

R_SFE_u	

R_SFE_ufb	

R_SFE_load	

R_SFE_des_th	

R_SFE_des_thd	

R_SFE_des_thdd	

R_SFE_uff	

	

R_SAA_th	

R_SAA_thd	

R_SAA_thdd	

R_SAA_u	

R_SAA_ufb	

R_SAA_load	

R_SAA_des_th	

R_SAA_des_thd	

R_SAA_des_thdd	

R_SAA_uff	

	

R_HR_th	

R_HR_thd	

R_HR_thdd	

R_HR_u	

R_HR_ufb	

R_HR_load	

R_HR_des_th	

…	

CLMCPLOT in Matlab

CLMCPLOT in Matlab

CLMCPLOT in Matlab

Programming SL: What is
happening on the Task-Servo?

l  The Task-Servo just executes Tasks
l  At high sampling rate (e.g., 100Hz for the NAO)

l  Read sensory date from shared memory
l  Generate desired trajectory and feedforward commands
l  Write desired trajectory and feedforward commands to shared

memory

l  Tasks need to consist of (at least) 3 function
l  Initialization function of the task (not time critical)
l  Run function of the task (real-time)
l  Function to change the parameters of the task (not time critical)

Adding a New Task
l  Write C/C++-functions that contain the 3 required

routines
l  (templates: sample_task.c or sample_task_cpp.cpp will be provided)

l  Compile the C-code
l  Use the setTask (short: st) command in the task_servo

to start the task

What is happening in the
INIT function?

l  Bring the robot to an initial (safe) posture
l  Initialize variables
l  Trigger task execution

What happens in the RUN
function?
l  Assign appropriate values to

feedforward commands and
desired trajectory variables
l  “joint_des_state” structure

receives desired states and
u_ff

l  “joint_state” structure has all
current state information

l  Definition of these structures
(see SL.h)
l  SL_Jstate joint_state[N_DOF

+1]
l  SL_Dstate

joint_des_state[N_DOF+1]
l  Possible DOFs: see left.

typedef struct { /* joint space state for each DOF */	

 real th; /* theta */	

 real thd; /* theta-dot */	

 real thdd; /* theta-dot-dot */	

 real u; /* torque command */	

 real load; /* sensed torque */	

} SL_Jstate;	

	

typedef struct { /* desired values for controller */	

 real th; /* desired theta */	

 real thd; /* desired theta-dot */	

 real uff; /* feedforward command */	

} SL_DJstate;	

enum RobotDOFs {	

 R_SFE = 1,	

 R_SAA,	

 R_HR,	

 R_EB,	

 R_WR,	

 R_FING, 	

	

	

	

 L_SFE,	

 L_SAA,	

 L_HR,	

 L_EB,	

 L_WR,	

 L_FING,	

	

	

 R_FB,	

 R_HFE,	

 R_HAA,	

 R_KFE,	

 R_AFE,	

 R_AAA,	

	

 L_FB, 	

	

 L_HFE,	

 L_HAA,	

 L_KFE,	

 L_AFE,	

 L_AAA,	

	

	

 B_HR,	

 B_HN,	

	

	

 N_ROBOT_DOFS	

};	

What happens in the
CHANGE function?
l  Interactively change variable assignments, e.g., change

some gains for gain tuning.
l  Be careful: you can change variables that are in the running

program, and a typo could be terrible
l  Read variables into temp variables, check min/max values, and

only then assign to variables that are used

CMAKE for creating
Makefiles

l  CMAKE is open
source software

l  src/CMakeList.list
is the only file you
need to change if
you add new files
for compilation

An
Example
C-Program

An
Example
C-Program

An
Example
C-Program

An
Example
C-Program

