CS545—Project NAO

e Project Description
= NAO standing on one leg
Move back-and-forth between both legs
Step in place
Optional: step forward
Optional: just do something new

e Basic Math of Approach
e Programming in the SL Simulator

Learn About NAO DOFs

o Start NAO simulator (the robot hangs in the
air and all DOFs can move freely)

e Use nao.task>where to see the current name,
number, and value of all DOFs. The DOFs on
the right is what you are going to need most

e Use nao.task>go and move these DOFs to
new desired positions. Observe where the
simulator moves to understand the DOFS

e Click on the Graphics Window to see a pop-
up window how to change the view of the
graphics

14: R_HFE
15: R_HAA
16: R_KFE
17: R_AFE
18: R_AAA

20: L_HFE
21: L_HAA
22: L_KFE
23: L_AFE
24: L_AAA

NAO DOF Definition in SL

B_HN=26 (BodyHeadNod)
R_SAA=2 (RightShoulderAddAbd)
R_SFE=1 (RightShoulderFlexExt)
R_EB=4 (RightElbowFlexExt)
R_HR=3 (RightHumeralRot)
R_WR=5 (RightWristRot)
R_FING=6 (RightFingers)

R_FB=13 (RightForebend)
R_HFE=14 (RightHipFlexExt)
R_HAA=15 (RightHipAddAbd)
R_KFE=16 (RightKneeFlexExt) |
R_AFE=17 (RightAnkleFlexExt)
R_AAA=18 (RightAnkleAddAbd)

\\\‘

74 b“'
SN

B_HR=25 (BodyHeadRotation)
L_SAA=8 (LeftShoulderAddAbd)
L_SFE=7 (LeftShoulderFlexExt)
L_WR=9 (LeftHumeralRot)
L_EB=10 (LeftElbowFlexExt)
L_WR=11 (LeftWristRot)
L_FING=12 (LeftFingers)
L_FB=19 (LeftForebend)
L_HFE=20 (LeftHipFlexExt)

L_HAA=21 (LeftHipAddAbd)

L_KFE=22 (LeftkneeFlexExt)
L_AFE=23 (LeftAnkleFlexExt)
L_AAA=24 (LeftAnkleAddAbd)

Basic Approach

e Initial: Stand on both feet, maybe squat a bit

e Move Center of Gravity (COG) projection in the x-y plane
to be in the middle of right foot

o Lift left foot up

e Put left foot down again, move COG projection to left
foot, move right foot up

e Continuously stepping in place

e OPTIONAL: make small forward progress while stepping
In place

r ~

C“&(@“ T

)

4 <

PR \\\
4(

G2
|

e Min jerk movements (or cubic spline), in either joint
space or COG space (Homework 1 and 2)

e Inverse kinematics controller for COG (Homework 2)
(COG position/velocity, COG Jacobian, and
pseudoinverse will be provided)

(=

Basis Functions You Need

Approach ONE (Simple, but .-

very manual and hacky) A
|

e Somehow find a joint space target for the robot to stand on
one foot
Use nao.task>freezeBase to put the robot on the floor
Use nao.task>go to give individual joints desired targets

Observe the “red ball” on the floor moving to the center of the right
foot

Do very small changes in joint angles, otherwise the robot falls over.
Use nao.task>reset to put the robot back on the floor

Note that moving one leg alone creates a conflict between both legs,
as they are coupled through a looped dynamics
e After you have an appropriate joint-space target, use a min-
jerk movement (or cubic spline) to go there (like HW3), then
you should be able to lift the left leg with a simple joint space
movement

e Use nao.openGL>coordDisplay to visualize joint names
(accept all defaults)

Approach TWO (Clean but
more technical)

e Move COG to center of right foot by inverse kinematics
Use nao.task>where cog to see a print-out of COG position

Use nao.task>cwhere to see a print-out of foot positions. This
print-out will give you the target position of for the COG for
moving over a foot

Plan min jerk (cubic spline) trajectory of COG position to move
from current position to desired position

Execute with inverse kinematics
e Lift left foot up with simple joint space movement

Theory of COG Inverse
Kinematics

COG:x,, = Zmixl e
2 m, i=1
i=1
ox 1 & OX,
COG Jacobian: J,, =—== Zmi —Tixog

“¢ 90 imi p 00

Floating Base COG Jacobian: J,, 4., = [Jooe Jiase }

Constraints from standing on 2 feet: J ., 7.0 | Xpuse =0 (no slipping)

Null Space Projection for Constraints: N = (I —J e toard e ﬂom)

Constraint COG Jacobian: J =J N

cog const cog= "¢

Inverse Kinematics with
Constraint COG Jacobian

e Given: Desired trajectory of COG

X X

cog des >~ cog des

e Reference COG velocity

Xcag,ref — kp (XCOg,des o Xcog) T Xcog,des

e |K Solution

Xbase,a’es = J#co ,CON Xco Jef edes (t + 1) — éa’es (t)At + edes (t)

Implentation In SL

e balance task.cpp is the skeleton to use

e All important variables are pre-computed and
commented

