
CS545—Project NAO
l  Project Description

§  NAO standing on one leg
§  Move back-and-forth between both legs
§  Step in place
§  Optional: step forward
§  Optional: just do something new

l  Basic Math of Approach
l  Programming in the SL Simulator

Balancing on One Leg

Learn About NAO DOFs
l  Start NAO simulator (the robot hangs in the

air and all DOFs can move freely)
l  Use nao.task>where to see the current name,

number, and value of all DOFs. The DOFs on
the right is what you are going to need most

l  Use nao.task>go and move these DOFs to
new desired positions. Observe where the
simulator moves to understand the DOFS

l  Click on the Graphics Window to see a pop-
up window how to change the view of the
graphics

14: R_HFE
15: R_HAA
16: R_KFE
17: R_AFE
18: R_AAA

20: L_HFE
21: L_HAA
22: L_KFE
23: L_AFE
24: L_AAA

NAO DOF Definition in SL

B_HR=25 (BodyHeadRotation)
L_SAA=8 (LeftShoulderAddAbd)
L_SFE=7 (LeftShoulderFlexExt)
L_WR=9 (LeftHumeralRot)
L_EB=10 (LeftElbowFlexExt)
L_WR=11 (LeftWristRot)
L_FING=12 (LeftFingers)
L_FB=19 (LeftForebend)
L_HFE=20 (LeftHipFlexExt)
L_HAA=21 (LeftHipAddAbd)
L_KFE=22 (LeftKneeFlexExt)

L_AFE=23 (LeftAnkleFlexExt)
L_AAA=24 (LeftAnkleAddAbd)

B_HN=26 (BodyHeadNod)
R_SAA=2 (RightShoulderAddAbd)
R_SFE=1 (RightShoulderFlexExt)
R_EB=4 (RightElbowFlexExt)
R_HR=3 (RightHumeralRot)
R_WR=5 (RightWristRot)
R_FING=6 (RightFingers)
R_FB=13 (RightForebend)
R_HFE=14 (RightHipFlexExt)
R_HAA=15 (RightHipAddAbd)
R_KFE=16 (RightKneeFlexExt)
R_AFE=17 (RightAnkleFlexExt)
R_AAA=18 (RightAnkleAddAbd)

Basic Approach
l  Initial: Stand on both feet, maybe squat a bit
l  Move Center of Gravity (COG) projection in the x-y plane

to be in the middle of right foot
l  Lift left foot up
l  Put left foot down again, move COG projection to left

foot, move right foot up
l  Continuously stepping in place
l  OPTIONAL: make small forward progress while stepping

in place

Basis Functions You Need
l  Min jerk movements (or cubic spline), in either joint

space or COG space (Homework 1 and 2)
l  Inverse kinematics controller for COG (Homework 2)

(COG position/velocity, COG Jacobian, and
pseudoinverse will be provided)

Approach ONE (Simple, but
very manual and hacky)
l  Somehow find a joint space target for the robot to stand on

one foot
l  Use nao.task>freezeBase to put the robot on the floor
l  Use nao.task>go to give individual joints desired targets
l  Observe the “red ball” on the floor moving to the center of the right

foot
l  Do very small changes in joint angles, otherwise the robot falls over.

Use nao.task>reset to put the robot back on the floor
l  Note that moving one leg alone creates a conflict between both legs,

as they are coupled through a looped dynamics
l  After you have an appropriate joint-space target, use a min-

jerk movement (or cubic spline) to go there (like HW3), then
you should be able to lift the left leg with a simple joint space
movement

l  Use nao.openGL>coordDisplay to visualize joint names
(accept all defaults)

Approach TWO (Clean but
more technical)
l  Move COG to center of right foot by inverse kinematics

l  Use nao.task>where_cog to see a print-out of COG position
l  Use nao.task>cwhere to see a print-out of foot positions. This

print-out will give you the target position of for the COG for
moving over a foot

l  Plan min jerk (cubic spline) trajectory of COG position to move
from current position to desired position

l  Execute with inverse kinematics

l  Lift left foot up with simple joint space movement

Theory of COG Inverse
Kinematics

COG: xcog =
1

mi
i=1

n

∑
mixi,cog

i=1

n

∑

COG Jacobian: Jcog =
∂xcog
∂θ

= 1

mi
i=1

n

∑
mi

∂xi,cog
∂θi=1

n

∑

Floating Base COG Jacobian: Jcog, float = Jcog Jbase⎡
⎣

⎤
⎦

Constraints from standing on 2 feet: J feet , float

θ
xbase
ωbase

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 0 (no slipping)

Null Space Projection for Constraints: Nc = I− J#
feet , floatJ feet , float()

Constraint COG Jacobian: Jcog,const = JcogNc

Inverse Kinematics with
Constraint COG Jacobian
l  Given: Desired trajectory of COG

l  Reference COG velocity

l  IK Solution

 xcog,des , xcog,des

xcog,ref = kp xcog,des − xcog() + xcog,des

θdes

xbase,des

ωbase,des

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= J#
cog,const xcog,ref θdes t +1() = θdes t()Δt + θdes t()

Implentation In SL
l  balance_task.cpp is the skeleton to use
l  All important variables are pre-computed and

commented

