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4.1 STATUS OF FREQUENCY-DOMAIN METHODS

For a period of about twenty years—from the early 1940s through the early
1960s—frequency-domain methods were the only systematic tools for the analy-
sis and design of control systems. These methods were developed by physicists
and electrical engineers in response to the World War II need for improved
servomechanisms to be used in various weapons systems, and were based upon
the frequency response/operational calculus methods then in use for designing
electrical networks for communication systems. It is no coincidence that the
pioneering work of Nyquist[1] and Bode[2] in the early part of the century, and
even the very invention of the feedback amplifier by Black,[3] all products of
the Bell Telephone Laboratories, were done in the interest of improved com-
munication systems.

(The connection between frequency-domain methods and communication
systems is a possible explanation of why the development of control theory
took place and still continues mostly in academic departments of electrical
engineering, even though the electrical hardware in many control systems is all
but negligible.)

Through the interdisciplinary activities of individuals such as the late Rufus
Oldenburger, a mechanical engineer who understood and appreciated the
significance of frequency-domain methods, these techniques were introduced to
other branches of engineering and became widely used throughout the entire
field of automatic control.

Just at the time that frequency-domain methods had reached their peak of
development, in the late 1950s and early 1960s, the alternative state-space
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methods began to make their appearance. But while the new state-space
methods developed rapidly in the decades following and found new adherents
and apostles, the vigor of frequency-domain methods hardly diminished. Not-
withstanding the level to which state-space methods have been developed, most
control systems continue to be analyzed and designed by frequency-domain
methods. Concepts such as “‘bandwidth,” “phase and gain margins,” and
*corner frequencies™ are entrenched in control system technology and are not
likely to be displaced. They continue to be useful.

Starting in the mid 1970s, new impetus was imparted to frequency-domain
methods for multivariable systems through the efforts of a number of inves.
tigators centered in Great Britain around Rosenbrock and MacFarlane. (See
Note 4.1.}) Among the fruits of this effort was a growing recognition that
frequency-domain methods and state-space methods enhance and complement
each other. The burgeoning theory of robust control systems, which was started
only in the past few years, is further evidence of the symbiosis of frequency-
domain and state-space methods.

f

4.2 FREQUENCY-DOMAIN CHARACTERIZATION
OF DYNAMIC BEHAVIOR

The fundamental concept of frequency-domain analysis is the “‘transfer func-
tion” which expresses the relationship between the Laplace transform y(s) of
the system output y(1) and the Laplace transform u(s) of the input u(r)

y(s) = H(s)u(s) (4.1

where H(s) is the transfer function of the system. This relationship is valid for
any time-invariant linear system, even when the system cannot be represented
by sets of ordinary differential equations of finite order. The representation (4.1)
is valid, for example, for systems-whose physical properties are described by
partial differential equations, or by pure “transport™ delays.

The validity of (4.1) is a consequence of the linearity and time invariance of
the system under examination. In the time domain such a system can be
represented by the convolution integral

()= % H(t - 7)u(r) dr (4.2)

where H(t) is the “impulse-response” (matrix) of the system.

The basic frequency-domain relation (4.1) follows from (4.2) as a result of
the well-known “convolution theorem” proved in many texts (see{4], for
example) which asserts that the Laplace transform of a convolution of two
functions is the product of the respective Laplace transforms of these functions.
Thus, the transfer function H(s) is the Laplace transform of the impulse
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response:

©

H(s} = #[H(1)] = .—‘ e 'H(t) dt (4.3)

]

When the number of inputs and/or outputs is greater than 1, then H(s) is a
matrix of appropriate dimension: if there are m inputs and [ outputs, then H(s)
is an I-by-m matrix, the elements of which are the transfer functions from the
individual components of the input vector to the individual components of the
output vector.

When the system of interest has the standard state-space representation
X = Ax + Bu
y=Cx+ Du
then, as shown in Chap. 3, the transfer function (matrix) is given explicitly by
IA.&.N C(sI-A)Y'B+D

_C(Es" '+ Es*?+...+ E)B
- s*+as* T+ 4 g,

+D (4.4)

where the denominator of H(s) is the characteristic polynomial
D:VH__.QI\._Hu.»+3.nx1_+...+a» (4.5)

and E, = L E,,..., E, are the coefficient matrices of the adjoint matrix for the
resolvent (sI — A)™', as discussed in Chap. 3. The raots of the characteristic
equation |sI — A| =0 are called the characteristic roots or eigenvalues of the
system.

If the D matrix is nonzero, there is a direct path from some input to some
output. The transfer functions from those inputs that are directly connected to
the output will be polynomials oI degree % in 5. All the other transfer functions
aré proper rational functions, that is, Tatios of polynomials in s in which the
degree of the numerator is strictly less than the degree of the denominator.

The variable s of the Laplace transform is a complex variable

s=otjo  j=+-1

called complex frequency. Frequency-domain analysis owes its name to this
identification of s with complex frequency. ,

A transfer function H(s) which is a proper rational function of 5 can be
expanded in partial fractions

2~h_«r_+. ..+Zr

Hs) = s+dis* '+ 14,
= Hy(s) + Hy(s) + - - - + He(s) (4.6)
where
_ Ry Ry o z_.__.
H.(s) = ulx._x?lu_.vm.* +?|3v.\_ 4.7)
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The complex frequencies s,(i = 1,2,..,k<k) are the distinct roots of the
denominator of (4.6) and the v; are corresponding multiplicities of these Toots.
These roots of the denominator are calied the poles of the transfer function
because H(s) becomes infinite at these complex frequencies and a contour map
of the complex plane appears as if it has poles sticking up from these peints.

If H(s) is a matrix, then the coefficients N, of the numerator polynamiaf of
{4.6) are matrices and so are the coefficient matrices Ry of the partial fraction
expansion.

The impulse response H(t} of the system is given by the inverse Laplace
transform of (4.6):

H(t)= H()+ Hy(t)+ - - + Hi(1) : (4.8)
where
H{t)=(R,; + Ryt+-+-+ R, 17 /(v — D) e (4.9)

Thus the impulse response of a time-invariant linear System having a proper
rational function of s as its transfer function is a2 sum of time-weighted
exponentials of the form of (4.9). The expanents of the exponentials are the
poles of the transfer function, and the time-weighting functions are polynomials
in ¢ of one degree less than the multiplicity of the corresponding poles.

If the numerator of the transfer function (4.6) is the same degree as the

denominator, the constant term can be removed and the remainder written as a
proper rational function, i.e.,

_,_Euz._%+z_h.1+.:+2»| Nis* '+ .. 4 N,

q»+&_h»|.+...+&x IZc+u»+&_uTu+...+&k (410)
N, = N, - Ny, (=1,2,... k) (a.11)
The corresponding impulse response has the form
. 3
H() = Nod()+ % (Ry+-- -+ R (v = 1)1) e (4.12)

i=1

where (1) is the unit impulse function (Dirac delta function).

It is certainly possible to conceive of systems having transfer functions in
which the degree of the numerator is higher than the denominator. For
example, an electrical inductor has the transfer function (complex impedance}

K@M z(s) = Ls

i(s)

S:mn”:a<o~nmmncf:m —.omm:.naqmmﬁrnccﬂwcngngno::«a is regarded as
m_._o input. The impuise response of such systems, in general, contains not only
Impulses, but various derivatives (doublets, etc.) of impulses. These are bother-
Some and can generally be avoided by suitable reformulation of the problem. If

the voltage, in the case of the inductor, is regarded as the input and the current

§
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is regarded as the output, then the transfer function is the admittance

i(s) 1
——=y(s)=—
v{s) Ls
which is a perfectly acceptable, proper rational function.
The general form of the transfer function (4.10) is consistent with the
transfer function of the state-space representation given by (4.4). In particular

ZD”b
and
N, = CEB |
i=1,2,...,k
A&..“a_

Thus the impulse response of a system in the standard state-space rep-
resentation is a sum of time-weighted exponentials e*' with the exponents s,
being the roots of the characteristic polynomial, i.e.,

|st — Al=s*+as*"+. . +qa, =(s —8)%i - (8 — sp)“F {4.13)

Multiple poles (i.e., repeated characteristic roots) occur quite frequently at
the origin (s = 0). For example a pure mass with the transfer function H(s) =
1/ms”> has a double pole at s=0. But multiple poles at other complex
frequencies rarely occur in practical problems. To simplify a derivation it is
often convenient to assume that multiple poles of a system occur only at the
origin.

4.3 BLOCK-DIAGRAM ALGEBRA

One reason for the popularity of frequency-domain analysis is that the dynamic
behavior of a system can be studied using only algebraic operations. The
transfer functions of subsystems can be combined algebraically to yield the
transfer function of the overall system, and its response to various inputs can be
oblained by multiplying the Laplace transform of the input by the transfer
function, as prescribed by (4.1), to obtain the Laplace transform of the output.
The actual output time function, if needed, is calculated by finding the inverse
Laplace transform of y(s), using algebraic techniques (partial fractions) in
conjunction with a table of Laplace transforms. Nowhere in this analysis,
except possibly in deriving the transfer functions of the subsystems, is it
necessary to have any dealings with differential equations.

The basic techniques of manipulating block diagrams consist of combining
transfer functions in parallel and in tandem and eliminating feedback loops.
The three operations are illustrated in Fig 4.1. :

Figure 4.1(a) shows a system comprising two subsystems with transfer
functions (matrices) H,(s) and H,(s). The summing junction, represented by the
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Hi(s) M
D Y b H(s) = Hy(s) + Hafs)
M Hys) |22
(a)
—“ 3 Hi(s) n_, Hals) [——  H(s) = Hy(s)Hi(s)
&)
143 € 4
Hi(s) > H(s) = 1+ H($)Ha(s)] 7' His)
o = H ()7 +Ha(s)H {s)] !
Ha(s)

(c)

Figure 4.1 Subsystemns in combination. (a) Subsystems in parallel; (b) Subsystems in tandem;
{¢) Single-loop feedback system.

circle, makes sense only when each subsystem has the same number of outputs,
t.e., dimensions of y, and y, are equal. Then

y(s) = yi{s) + y2{s) = Hy(s)uls) + Hy(s)u(s)
=[H,(s) + Hy(s)]u(s) (4.14)

Thus the transfer function of a parallel combination of subsystems is the sum of
the transfer functions.

The tandem (or series) combination of two subsystems is shown in Fig.
4.1(b). For this combination :

yi(s} = H(s)u(s)
and

y(s) = Hy(s)y,(s)
Thus

y(s) = Hy(s)H (s)u(s)

and the transfer function_of the tandem combination is the product of the
transfer functions; ,

H(s) = H,y(s)H,(s) (4.15)
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Note that the order in which the factors of H(s) are placed depends on the
order in which the subsystems are connected. In general H,(s)H(s)#
H,(s)H,(s), except when H, and H, are 1-by-1 matrices.

A system containing a feedback loop is shown in Fig. 4.1(c). The transfer
function H,(s) is called the forward transmission and the transfer function H,(s)
is called the feedback transmission. The minus sign at the summing junction
indicates that the signal e is the difference between the system input # and the
feedback signal z. This corresponds to negative feedback. The transfer function
for Fig. 4.1(c) is obtained by tracing the signal flow through the system:

y(s) = Hi(s)e(s) = H,(s){uls) — z(s)]
But
z(s) = Hy(s)y(s)

Thus .

y(s) = H,(s)[u(s) — Ha(s)y(s)]
or

[T+ Hi(s)Hy($)ly(s) = Hi(s)u(s)
and, finally,
y(s) = [T + H(s)Hy($)] " Hy(s)us)

Thus, the transfer function (matrix) of the system containing a feedback _o.ov is

H(s) = [T + H,(s)Ha(5)] "'H,(s) (4.16)

The matrix
F(s) = I + H{s)Hy(s)

which may be called the return-difference (matrix)—a generalization of the
terminology introduced by Bode[2]—has an inverse except at isolated values of
s at which the transfer matrix becomes infinite. These values of s are the poles

of the system. Since
adj [ + H,(s)H.(s)]
IF + Hy(s)Ha(s)]
it follows that the characteristic equation of a single-loop feedback system is
[I+H,(s)Hxs)| =0 (4.17)

In words: the zeros of the determinant of the return difference are the poles of

the system.
Alternative expressions for the transfer function are obtained by following

different sequences of steps. In particular,
y(s) = H(s)e(s)

[7+H(s)H(s)]' =
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and
e(s) = u(s) — z(s) = u(s) — H.(s)H,(s)e(s)
Thus
[T+ Ha(sIH, (5)Je(s) = u(s)
or
e(s) = [T+ Ha(s)H,(5)] "u(s) (4.18)
Finaily
_ y(s) = H ()T + Hy(s)H,(s)] 'u(s)
Thus

H(s) = H, ()T + Hy(s)H,(5)] (4.19)

A g v
I rom (4 _@ it 1s seen :—Ln N:Dﬂ_—ﬂ— _O:: of :—0 G_—NuﬁOﬁQ:MZO ODF—N:C: :_
n—-o

1T+ Hay(s)H (s)] = 0 : (4.20)

One &:o:_a not make the mistake of assuming that H (s) and H,(s)
commute just because the order in which they are multiplied does not Bﬂswm:
setiing up the characteristic equation. It does follow, however, that H,(s) and
H,(s) are Sz,ﬂa_i.azm. in whatever order they are multiplied. w,mznn H _?:._,A,:
may be a higher-dimension (or lower-dimension) matrix than _._Q_QVI,.A&.

calculations can be simplified by working with th i
+ e
hhculasion g product having the smaller

When H,(s) and H A.& are transfer functions of si i i
> single-input, single-output
systems, then both (4.17) and (4.19) reduce to the well-known _ao_.ac_w P

H,(s)
1+ H(s)H,(s5)

H(s) = (4.21)

and the return difference is
F(s) =1+ H,(s)H,(s)

By Rﬁamaa.nwaizmzon of subsystems in parallel, in tandem, and with
feedback loops it is often possible 10 obtain the transfer function .2. a fairly
complex system i::o.n: performing a great deal of matrix algebra. Instead of
c.w the repeated combination of elements, the block diagram of a single-input
w_zm_n-o::wi system can be reduced in a single operation by the use of ::w.
mo:m._.u.u..mm_: formula developed by 8. J. Mason.[5] Mason’s rule is fraught with
possibility of error, however, unless the user is very careful with bookkeeping.

Example 4A cmm.m:n:g calumn The fourth-order dynramic model of a distillation column, as
n_o<n_w_un.._ by Gilles and Retzbach, was given in Chap. 2 (Example 2G on p. 47). The transfer
functions from the inputs 1o the state variables and outputs can be obtained using the matrix




41005

USC Neuroscience Program

35 FAX 213 7405687

01/26/99 TUE 13

129 co. ,L SYSTEM DESIGN

calculations described in Chap. 3. But in this example the transfer functions are more readily
calculated by block-diagram manipulations.

The block diagram corresponding to the differential equations is shown in Fig. 4.2. The
overall system has been subdivided into two subsystems as shown in Fig. 4.3, each corresponding
to a different physical aspect of the process. The first subsystem, having a single input Au, and
asingle output x,, represents the boiler. The second subsystem then represents the inner operation
of the distillation column. The integrators have been represented by their transfer functions,
[/s. Subsystem 1 itself comprises two single-loop feedback systems, separated by a gain element.
Thus, by (4.15) and (4.21)

Xy(5) _ 1/s ay, 1/s by = a3, by, (4A.1)

H = =
1(s) Auy(s) 1-1(1/s)ay, 1~ (t/s)a,, (s —ay)s —ay))

The second subsystem has two inputs, x, and Au,, and 1wo outputs, 4z, and Az;. The

input-output relation can be expressed as

Azy(s)
=H As(s) + H(s ) 4A.2
Azy(s) 21(5)As(s) 22(8)%,(s ( )
fa fa
I
x3 = Az,
» by M -
Displacement
1 of
first Jocus
Auz = Ag
———9 fa
Vapor side-
siream flow
rate
Xy = Az,
by -
Displacement

of
second locus

dy dy
4
Auy X3
by an —
Steam \
flow
rate
a a
" MHeat 12 A.<w_uoq
flow to flow
boiler rale
hoidup

Figure 4.2 Dynamic model of distiltation column.
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Subsystem 2

_
!
a2 32 - _
|
_

———————

Au,
by Us an s |—d

o]

Figure 4.3 Representation of distillation column as two subsystems.

where

b
Hyy(s) = %\\M Haals) = “\\M
42 32,

Substituting x,(s) = H,(s)Au,(s), as given by (4A.1) into {4A.2) gives

Azy(s) | bi1a3ay /5(s — ax)(s — a;))
= Hy(s)As(s) + * "
Azy(s) a(s)as(s) by124y3i/5(s — ax)(s — a,,) Auls)
&lu..m i biya3,y,
- -.ML_H: — a)(s ~ a,) |[ As(s)
h“ b a3, Au(s)
5 _ s(s — az)(s - a;}

Note that the poles of the system are located at
s=0 §=ay 8= a5,

There arc only three different poles, although the system is fourth-order. The reasan for this is
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0,,J4iK,,

q
= K, | > K0 | >

.R.:‘.&T

Figure 4.4 Dynamic model of hydraulically actuated tank gun turret.

that subsystem 2 contains two identical dynamic subsystems, namely integrators, in parallel.
This has importan( implications with regard to controllability, as will be discussed in Chap. S.

Example 4B Hydraulically actuated gun turret A block diagram corresponding to the dynamic
madel of the hydraulically actuated tank gun turret of Example 2D is shown in Fig 4.4. After
simplification by combining the feedback loops around the integrators, the equivalent block
diagram, with the disturbances omitted, has the appearance of Fig. 4.5(a). The picture is a bit
complicated because of the two crossed feedback paths, (1) from w to the summer after g, and
(2) from p to the summer following w. :

A trick often used in block-diagram simplification, however, reduces the block diagram of
4.5(a) to 4.5(b). The trick is 10 mave the starting point for feedback path (1) from  to P
compensating for the transfer function of 1/s from p to w by placing that transfer function
in the moved path (1) as shown in Fig. 4.5(b). The transfer function frem q to p is given by

K,lJ

pls) __ s+, (K./J)s

ale) |, Kuld 1 s(s+0,)+ K,/J 8D
s+0,, s

The block-diagram resulting in this simplification is shown in Fig. 4.5(c). From this figure it is
seen that the transfer function from u 1o pis

K, (Kn/Jd)s
Wm.wlvl SHKL, s(s+0,)+ K, /T
u(s) 14 Ky, J K, (Km/ s

s+t KL, s(s+0,)+ K, /T

- (K K,/ )s
KL+ 0,) + K, /TT+ Ky KK

(4B.2)
s

y
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_u K, q [N A @ )
/ s+ KL, s+, s s =
(1)
2
Kypd @
(a)
1 K, q K7 p N
/S KE s+ a, I/s
1)
175 (
2
Kapd )
&)
u K, 9 (Knld) s 14 @
" s+ KL, s(s+Q,) + K00 1/s

X @

(c)
Figure 4.5 Block-diagram simplification of model of hydraulically actuated tank gun turret.

(a) Figure 4.4 after reduction of loops around integrators; () Path from w 1o g moved to p
and integrator added; (c) Final simplification. '

And the transfer function from the system input u to the angle 8 is 1/s” times p(s)/u(s). Thus
Hes) < 86 _ K,Kn/J
u(s)  s{(s + KL )s(s +0,) + K,/ 7] + KapK K5}

The denominator of M(s) is the characteri
On expansion it is found that

stic palynomial D{s) of the open-loop system.

v . 4
Dis) = HT (0 + K L)+ Aﬁs F QLKL + azauaaY " xsw..r“_
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4.4 STABILITY

The quintessential requirement of a closed-loop dynamic system is stability: the
ability of the system to operate under a variety of conditions without “self-
destructing.”

Two categories of stability are of interest. The first category relates to the
ability of the system to return to equilibrium after an arbitrary displacement
away from equilibrium, and the second relates to the ability of the system to
produce a hounded output for any bounded input. For nonlinear or time-
varying systems these categories are distinct: a system may possess one kind of
stability without possessing the other. Detailed discussions of these categories
and theorems giving conditions for stability can be found in various textbooks
on system theory, such as [4].

If we confine our attention to Jinear, time-invariant systems, however, the
situation regarding stability is much simpler. Both categories of stability are all
but equivalent, Moreover, the basic stability criterion is directly determined by
the locations of the system poles, i.e., the roots of the characteristic equation of
the system.

Ability of a system to return to equilibrium relates to the unforced system

% = Ax (4.22)

For the initial state x(0) = xy, the unforced differential equation {4.22) has the
solution

x(t) = e%'x, (4.23)

where e™ is the state-transition matrix, given by

-... t

\:n.&-_:hTE‘_TM A M @.z\:v @,_h z.wt
i=1 \j=1

in accordance with the discussion of Sec. 4.2. The following properties can be

directly inferred from the form of the state transition matrix as given by (4.24):

1. If the real parts of all the characteristic roots are strictly negative (i.e., not
zero or positive), then e?' tends asymptotically to zero. Hence, no matter
how large the initial state x, is, x(t}) > 0 as ¢ - 0. The system is said to be
asymptotically siable.

2. If any characteristic root has a strictly positive real part, the state-transition
matrix given by (4.24) will have at least one term which will tend to infinity
as f > 0. In this case it is always possible to find some initial state which will
cause x(1) to become infinite. The system is said to be unstable,

3. If all the characteristic roots have nonpositive real parts, but one or more of
the characteristic roots has a zero real part, the situation is somewhat more
complicated: if all the characteristic roots having zero real parts are simple
roots, then the corresponding terms in the state-transition mairix are of the

NALYSIS 128

. . L ﬁ.(ﬂr\,r.n.
! ;
3:: 9.2 h?fﬁhﬁ, _w

Rt =

Since |&*| = 1, it is clear that these terms in the state transition matrix are
bounded. Hence the state x(r) that evolves from any initial state x; will also
remain bounded. But there will be some initial states from which the
subsequent solution will not approach zero asymptoticaily. Systems of this
type are said to be stable, but not asymptotically stable. If, on the other hand
any of the characteristic roots that has a zero real part is a repeated 32_
then, owing to the polynomial in ¢ that multiplies e, there will be at _numm
one term in e which will tend to infinity as - co_Hence there will be some
initial state for which x(t) » o0, and the system is unstable. (In the strict sense
the multiplicity of the roots of the minimum equation, i.e., the equation om
lowest degree satisfied by the matrix A, as discussed in the Appendix, rather
than the multiplicity of the roots of the characteristic equation, must be

examined to test for the stability of systems with such
axis.)

m FREQUENCY-DOM

roots on the imaginary

The above conclusions are summarized in Table 4.1.

.mmm_um._:w of Ew second category: bounded-input bounded-output (BIBO)
stability is determined using the convolution integral (4.2). Consider only a

m:.ﬂmdm-w:m:_r single-output system, having a scalar impulse response f(t). For
this system

y(y=| h(t -7 u(r) dr (4.25)

It is easy to show that

()] = ‘—a th(t = )| Ju(s)] dr (4.26)

.ﬂ_m meaning of the input u(r) being bounded is that there is a constant ¢ such
that

lu(f) = e for all ¢ (4.27)

Table 4.1 Stability conditions for linear systems

Condition Implication

. Re(s;} <0 for all §
2. Re(s;)) >0
3. Re(s;) =0 for some i = j, and

(a) s, is simple root far all such j

() s5;is multiple root for some such j

System is asymptoticaily stable

for some i System is unstable

System is stable, but not asymptotically stable
System is unstable

@ s o weany wa e ( Caanif)

exislg ._O _“,hlﬁn .fr ,Twsilmu ° 7
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In this case, by (4.26),

VOI=c | |att~7)dr (4.28)
0

In accordance with (4.8) and (4.9), the impulse response of a time-invariant
system is a sum of time-weighted exponentials. If the system is asymptotically
stable, then the exponentials all tend asymptotically to zero; no matter how
large the time-weighting on the exponentials, the integral in (4.28) will be finite
for all ¢ (including t - ), and hence |y(r}| will be finite. Thus we see that an
asymptotically stable time-invariant system produces a c.mﬂwom,mm;wmmm&..,&w:
“évery bounde

ifiput. On The other hand, suppose the system produces an

" unibounded output for some bounded inputs. This output must result from some

term in the impulse response that does not tend asymptotically 1o zero, which
implies that the system is not asymptotically stable. Thus a linear time-invariant
system in_which a_bounded input produces an unbounded output cannot Bé

asymptotically, stablg. (Although the mv\mﬁossmn.m.oummmw?m&m@:%1m.awd,—m“4wc,\_ﬂm.m

still be stable. The simplest example is an integrator for which A(¢) = 1. For a
bounded input, say u(r) = 1, y(t) = ¢ which tends to infinity with ¢, so for this
example a bounded input does not produce a bounded output, There are many
similar examples.)

The foregoing discussion may be summarized as follows:

Asymptotically stable system => every bounded input produces
a bounded output

Unstable system = some bounded input produces
an unbounded output

Note that the implications go only in one direction. We may not conclude
that a system for which every bounded input produces a bounded output is
asymptotically stable. As we shall see in the next chapter, it is possible that
some unstable state variables are not excited by the input. It is also not
permissible to conclude that if some bounded input produces an unbounded
output, the system is unstable. An ideal integrator, already cited, is an example
of a stable system for which a bourded input (say a step function) produces an
unbounded output (a ramp).

Example 4C Aircraft longitudinal motion The linear dynamic equations for the longitudinal
motion of an aircrait were given in (2.36). Using the state and cuntrol definitions

Au

a

x= u =8
q
8

we obtain the dynamics and control matrices

X, X -y Xe

Z,/V Z,)V 0 ¥4
'l ol po|ZelV “c.n

0
l
M, M, M, 0 M,

u o

0 0 I 4] 0

A=
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The resolvent for this system is

s—X, -X, 0 gl
- -Z,/V s-2Z,/V -1 0
(s)=(sI-A)"'= “ -
-M, -M, s—M, 0 t4c)
0 0 | 0
From the resolvent we obtain the characteristic polynomial
IsT = Al = 5"+ a,5* + 2,57 + ays + a, (4C.3)
h --Z
where a, = II.\IIE._ - X,
Z, Zs Z,
a, = 1¢\| ?n.,. - ?ms + \/\:AH\IJ.. g;v - |¢|\¥\=
z 2, (4C4)
a; = IX..Aﬂ M, - gnv + X..Aﬂ, M, - ??v
ZM, -Z.M,
a, =g

v

‘

) Contribution to the characteristic equation of the terms due to the change in speed (those
with En ﬂ._cmo:E u) are usually quite small relative to the other terms. Thus, as an
approximation, the characteristic polynomial is

2 z, z,
{sf — A .ﬁAuN - AI—M+ Eavh +ﬂ M, - ??v
=557+ 24,05 + 07

I

(4C.5)

The double pole at the origin is‘due to the translation of the aircraft as an ideal mass, and the
quadratic factor is due to the rotation of the aircraft about the center of mass. This .wo:o: is
seen to be that of a mass-spring-damper system with a damping factor {, and a natural
frequency €, and is called the short-period motion of the aircraft.

If 2 and ¢, are both positive, the poles of the short-period motion lie in the left
half-plane and the short-period motion is stable. The aircraft in this case is said to be
aﬁw&&:ui.ﬁ&? stable. Until very recently, it was the responsibility of the aerodynamicist to
.amw_ms the aircraft to ensure aerodynamic stability for all operating regimes of the aireraft. It
is of course possible to stabilize an unstable aircsaft by means of a properly designed control
system, but the hardware (i.e., sensors and actuators} used 1o implement the control system
must be extremely reliable—as reliable as the airframe itself, With the advent of multiply-
redundant hardware, it is possible to achieve a very high degree of reliability, and it is now
considered safe to operate aerodynamically unstable aircraft having suitable LE:EQ redun-
dant stability angmentation systems. -

>,.. an example we consider the numerical data for an actual aircraft, the AFTI-16 (a
“_Mﬁ“:hmﬂ version of the F-16 fighter) in the landing approach contiguration, as given in Table
Using the data in Table 4C.1 we find that
Z,

-+ M, =200,

v 1.01

M, ~ M, =07=-1.1621 (4C.6)

. 3 R . .
Since Q7 < 0, the aircraft is aerodynamically unstable in this regime, having poles at

5p = —1.695 and 55 = 0.685 (4C.7)
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Table 4C.1 Aerodynamic parameters for AFTI-16 on landing approach

V= 139Kt
X, = —0.0507 X, = —3.861 Xg =0
Z,/V =-000117 Z,/V=-05164 Zy/V = —00717
M, = —0.000129 M, = 14168 M, = —0.4932 Mg = —1.645

The short-period poles as given by (4C.7) are only approximate, since the. effects of the
speed changes have not been accounted for. To take these effects into account we must
calculate the coefficients of the characteristic polynomial using (4C.4). For the data of Table
4C.1 the coefficients are found to be

a, = 1.0603
a=—1.1154
a; = —0.0565
a, = —0.0512

Numerical solution of the characteristic equation yields the pole locations
5;=—1705  5,=0724  s;,=-00394 x j0.200

We observe that the short-period poles s, and s,, when speed changes are accounted for,
are located very close to the approximate locations given in (4C.7). Another pair of poles
(which are at the origin in the approximate analysis), with a natural frequency of [(0.200)? +
(0.0394)*]"/% = 0.204 and a damping factor of 0.19, also appears due 1o speed changes. The
motion due to these poles is known as phugoid motion and is manifest as a slight oscillation
in altitude. (See Note 4.2.)

4.5 ROUTH-HURWITZ STABILITY ALGORITHMS

In the previous section we saw that the imaginary axes of the complex
frequency plane (the s plane) separates the region of stability from the region of
instability. If all poles lie in the left half-plane the system is asymptotically
stable; otherwise the system is not asymptotically stable.

It is now a routine exercise for a digital computer to find the roots of a
polynomial of very high degree. Before the advent of digital computers,
however, testing the stability of a system by calculating the zeros of the
characteristic equation was not practical. Methods were needed that did not
require actual calculation of these roots. The earliest contribution to this
problem was the Adams Prize Essay (1874-1877) of E. J. Routh[7] who
developed a simple tabular algorithm by which it is possible to determine
whether a given polynomial has all its roots in the left half-plane without
finding the roots. A different algorithm was developed by A. Hurwitz[8] in 1895.
And in 1962, P. C. Parks[9] showed that these algorithms could be derived by
use of a stability theorem that M. A. Liapunov developed[10] in 1892-1907.

The algebraic criteria are derived in textbooks such as Schwarz and
Friedland[4] on linear systems, and will not be repeated here. For convenience
of the reader, the resulting algorithms are presented here without proof.
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Table 4.2 Routh table

1 a, a, ay -
a, as as Q-
|
== b =a,~aa, by =a,—aas by=a,-aya,  ----.
1
@,
o=t ¢ = ay— agh, e =as—ayhy, .- e
1
b
=1 =
o, = d=by~we, e
t
O
ag=—" | o
HN_

Aron:mnmﬁnzm:ovo_v.:o-_smmwow:do mzmﬁnanovnamﬂmamo.,m:_c::wmw
assumed to be of the form :

D(s)=s*+a;s* "+ - +a,_s+a

The Routh table corresponding 1o D(s) is constructed as shown in Table
4.2. The first two rows are obtained by transcribing the coefficients of D(s) in
alternate rows as shown. Each succeeding row of the table is completed using
entries in the two preceding rows, until there are no more terms to be computed.
In the left margin are found a column of exactly k numbers a,, a,, ..., o, fora
kth-order system. The theorem of the Routh algorithm is that the roots of
D{s) = 0lie in the left half-plane, excluding the imaginary axis, if and only if alt
the a's are strictly positive.

The Hurwitz criterion, which is equivalent to the Routh algorithm, is based
on the construction of a k x k Hurwitz matrix

a_ Qw DTS .-..w
1 S
0 a a .-
H= ! 3 & ro
O _ Qw . rows
0 0 4 .
6 0 1 .-
k columns _

The first two rows of H are formed from the coefficients of D(s), with zeros
used for a;.., through a,,_,. Each row following is obtained by shifting one step
to the right the entries of the row two positions above, and padding the empty
Posittons with zeros. This process is continued until the k x k matrix is completed.
The stability theory based on the Hurwitz matrix is that the zeros of D(s) are in

AR R T e

S
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the left half-plane, excluding the imaginary axis, if and only if the determinants Thus,
‘D, =a, @ ==a, —ay
b a, a 1 a; = @),ay
), = =
1 a, : a=K
a a; as 3 The Routh table for this example is
bu =1 a; ay 3 1 a,
0 a a, a, K
a, =— a,——
Dy, = |H| & .
. .- - a _
are all strictly positive. o= — K
5 . @
2
ww Example 4D Distillation column—continued A closed-loop control system for the distillation 4
© column of the previous example is proposed by making the change in the steam flow rate Ay, K
D““ proportional to the error between Az, and some desired set point value, say Az. Thus, as a2 IH
3 shown in Fig 4.6, BETE
Auy(s) = u(s) = K[Az — Az,(5) (4D.1) -
m 1 [ 1(5)] Thus, for stability of the closed-loop system we must have
m and from the analysis of Example 4A
0
s(s—ay)s—a >0 4D.
m u(s) = ( 1) 1) Az, (s) 4n.2) h (4D.5)
= byagay ’ K _
0 . . . _— . a=—=>0 o K<aa {4D.6)
Zz The closed-loop transfer function H.(s) is obtained by substituting {4D.2) into (4D.1} and a
finding the ratio of Az, to Az . ] _
2 8 1 ) K> (4D.7)
=] K .
H.(s) = PP TR (4D.3) The first condition is a requirement on the open-loop dynamics. From the data given
i . about the process a,, and a,, are both negative, so (4D.5) is automatically satisfied. The
where K = b,,a5,a,, K. second and third conditions are combined to give
The characteristic polynomiat of the closed-loop system is : 0<K< aa, (4D.B)
- $ = (ay, + a;,)s? + a, a5 + K (4D.4) 1 which means that the gain K (which is a negative feedback gain) must be positive—i.¢.,
> only negative feedback is permissible, and that K must be smaller than a fixed positive
© number.
Yy . .
2 The Hurwitz matrix for this example is
<t As Az,
~ L —— > )
. a K 0
© Distiltation b
ﬂ column of . H=]1 a m
Fig. 4A.1 . 0 a K
=z Az Au .
M 1 I v and the stability requirements are
Azs /
=) - - Di=a >0
3 3 -
- Dy=aa;-K>0
it -
D;=KD,>0
<3} .
W which are the same conditions as obtained using the Routh algorithm. #
In the root-locus method to be studied in the next section we will be concerned with the :
variation of the closed-loop poles with the | in K i :
(2] . T : ! )p poles w. ¢ loop gain K. By the methods to be explained more
m Flgure 4.6 Single-loop control of distillation column. i fully in that section, we find that the roots move from the open-loop poles to infinity. The
©
N
~
—
=)
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open-iocop poles occur at

s=0

5=ay, {4D.9)

§ =4y

and the loci of the closed-loop poles have the appearance shown in Fig 4.7. One locus moves
along the negative real axis, and the other two, after moving together, separate from the qnwl_

axis and move to asymplotes at angles of 60 degrees from the positive real axis. The gain K
at which the loci cross the imaginary axis is the gain at which (4D.6) is an equality:

£ = aa, (4D.10)
The frequency w at which the crossing occurs is obtained by substituting s = jw into (4D.4)
-jot — wla + jwa, + K =0 (4aD.11}
The real and the imaginary parts of (4D.11) must simultaneously be zero:
)~ wa, =0 (4D.12)
~wla,+ K =0 (4D.13)

From (4D.12} we obtain w = 0 (corresponding to the open loop pole at the origin) and wl=a,
From (4D.13) we obtain w® = K/a,. Since by (4D.10) the critical gain K = a,a,, the second
expression for w? is consistent with the first.

To obtain the “breakaway frequency” s = —c, at which the root loci join before leaving
the real axis, we note that at that point, there is a double pole, so the characteristic equation
must be

(s e+l =57+ (e, + 2057+ e 2¢, + ;)5 4 0,63

w= 135 f-K = 6625

=50 -0 =3t =20 -1

Figure 4.7 Root-locus for feedback of steam flow rate,

FREQUENCY-DO

Thus we must have

a =c +2¢

a, = c(2¢, + ¢)
K =¢c?

which can be solved simultaneously to Bive ¢, ¢;, and K. Another method of finding the
method of the next section. Using

breakaway frequency is given in discussion of the root lacus
the numerical data for the paramelers of this process as given in Example 2G, namely

a;, = -30.3 az; = —6.02
gives a, =36.32 a, = 13824
Thus the gain at which the roots cross into the right hall-plane is
K = 6625

and the frequency at the crossing of the axis is

w=135

The root loci separate from the real axis at

. §=-c=-284

and this occurs for a gain K = 247.

4.6 GRAPHICAL METHODS

The algebraic tests of Routh and Hurwitz give the precise range(s) of param-
eter(s) for which a system is stable, and do not require the calculation of the
closed-loop poles. They are most useful for testing whether a design is satisfac-
tory but are not as convenient as some of the graphical methods (root-loci,
Bode and Nyquist plots) for design purposes. Since frequency-domain design
methods are not considered in this book, we will not dwell at length on these
graphical methods, but refer the reader instead to one of the standard textbooks
on the subject.[4, 11, 12] On the other hand, graphicai representations can often
serve as an aid to interpreting the design results that are obtained by state-space
methods. For this reason, it is worth considering them at least briefly.

Except for the recent extensions to multivariable systems (as typified by the
wark of Rosenbrock and MacFarlane) the graphical methods are addressed to
a single-loop system having a return-difference function

T(s) =1+ KG(s) (4.29)

where K is a scalar‘gain (the *“loop gain™) and G(s) is a rational function
known as the “open-loop” transfer function. A return difference of the form of
(4.29) arises directly in the systems shown in Fig. 4.8, but it is always possible
to manipulate the block diagram of a system so that the characteristic equation
of the system appears in this form for any system parameter represented by K.
The graphical methods are devices for elucidating the dynamic characteristics of
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- —_—— K M Gis)

v

Figure 4.8 Single-loop feedback system
return difference T(s) = | + KG(s).

a system having an open-loop transfer function G(s) as the loop gain K is
varied.

Root-locus methed The root-locus method, developed by Evans[13] in 1948 is
simply a plot of the locations in the complex plane of the roots of F(s) = 0, (i.e.,
the poles of the closed-loop system) as the loop gain is varied. The open-loop
transfer function is assumed to be a rational function of s, i.e., :

W f n,
|_lu A(rﬁ\ N... =0 G(s) = Q:T_?

Ak €w = hwo &o [, (s = p)
. K-B 88 L, = O
where C is a real constant, z; (i=1,...,n,) are the o?w:;_oomm zeros and p;

(i=1,..., n,) are open-loop pales. If desired the constant C can be absorbed
in the loop gain, by defining K = KC. It is seen that as K - 0, the closed-loop
poles, which are the roots of (4.29), tend to the open-loop poles pi. On the other
hand, as the gain K tends to infinity, the closed-loop poles tend to the
open-loop zeros. If G(s) is a proper rational function, however, there are fewer
open-loop zeros than open-loop poles. Since the number of closed-loop poles
does not change as K is varied, where do the closed-loop poles go that do not
go to the open-loop zeros? They go to_infinity. The manner in which they go to
infinity depends on the excess of poles over zéros. Imagine viewing the complex
plane from a great distance. From this vantage point all the poles and zeros
appear to be at the origin and G(s) looks like 1/s'"~". Thus, from this vantage
point the root-locus equation looks like

1+K~=0
5

C Ww (4.30)

e=n,—n,

or
s+ K =0 ' (4.31)

where e is the excess of poles over zeros in the open-loop transfer function.

Thus, as K becomes very large, the root laci that do not terminate at the .

open-toop zeros tend to infinity in the same way as the solutions of (4.31) tend
to infinity, namely as the eth roots of — K. Since there are exactly e such roots
at equal angles around a circle, these lines are the asymptotes of the root loci
that tend to infinity.: Figure 4.9 illustrates the asymptotic behavior for large
values of loop gain K of those branches of the root loci that tend to infinity.
The asymptotic behavior of the root loci can be rationalized another way:
we can say that the number of poles and zeros are always equal and that the
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4 jw
e=2
>
o
A 4
4 jw
e=3 /
/
\ \
(= e KG&G)=0 |
— N
s 1o colak Lim
Cn(rw\c...o»@@r wA { Yo
NGO, T2 b
. =4 \
badady ¢ N %
T¢s) AN .
/N -
AN N
(43) FARN
\ Figure 4.9 Asymptotes of root loci for several

values of excess poles.

root loci atways go from the. poles to the zeros, but that those zeros (e in
number) which are not in the finite part of the s plane lie at infinity.

., Figure 4.9 shows that whenever the excess of poles over zeros is greater
than 2, the root loci must eventually cross the imaginary axis into the right half’
of the s plane. Consequently, no system having an excess of two or more can be
Stable for all values of gain. Since the excess is two or more in most practical

systems, the implication is that in practice there is a Ainite upper limit to-the loop
gain. The ratio of the loop gain at which a system is designed to operate to the

gdin at-which it becomes unstable (expressed logarithmically), is known as the
gain margih of the system. Gain margin is an important consideration in systems

o
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in which the loop gain may change during the operating lifetime of the process
{due possibly to aging of components).

It must not be inferred that an excess of poles over zeros of 2 or less guarantees
stability, since the root loci may cross into the right half-plane for finite values
of gain, and remain there (when e = 2) or cross back into the left half-plane
when K becomes large enough.

The root loci cross into the right half-plane through the imaginary axis.
Except in the trivial case when the crossing of the imaginary axis is through the

origin (s = 0), the loci cross the imaginary axis at points s = +jw. This means’

that the nature of the unforced dynamic response changes from being sinusoidal
with slight positive damping to sinusoidal with slight negative damping. At the
dividing line, the response becomes purely sinusoidal: that of a harmonic
oscillator; The gains that cause the root loci to cross the imaginary axis and the
frequencies at which they occur are significant parameters in the root-locus
method. These frequencies and the gains at which they occur can be obtained
by setting s = jw into the characteristic equation and equating the real parts and
the imaginary parts to zero. The calculation is facilitated by the fact that the
gains at which the crossings occur also make exact equalities out of the
inequalities that result from the Routh {or Hurwitz) algorithm. This was already
illustrated in Example 4C.

The basic rules for drawing the root loci, as already illustrated are

The loci move continuously from the open-loop poles to ,Hrn open-loap zeros or
to infinity.

. The loci approach infinity at lines which are in the direction of the eth roots of

—1 = ¢~ from the origin.

Many other rules for constructing root-locus plots are obtained from the
basic root locus equation
L+ KG(s) = 1+ KDz 6 =2) o (432)
:_M_ A.w - mu_v
Each factor s — z; or s — p; is represented in the complex plane by a vector (a
“phasor” in electrical engineering parlance) from the zero z; or pole p; to the
point x, If 5 is a point on the root locus, then (4.32) must hold, i.e.,
-.M - 4; _
TR ) S (4.33)
:..hﬁ mu - m-_,v K
which means that the product of the lengths of all the vectors from the zeros to
the point s divided by the product of the lengths of all the vectors from the
poles must come out to be 1/ K and that the sum of all the angles of the vectors
from the zeros to the point s minus the angles of the vectors from the poles
must add to —180°. Rules obtained from this general principle, such as the
directions of departure of the loci from the open-loop poles or of arrival at the
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open-loop zeros, can be found in various textbooks [11,
frequency-domain analysis.

. The points at which the loci leave the real axis are known as breakaway
points. To find these points consider the root-locus equation
N(s}
D(s)
Multiply by the open-loop denominator to obtain the characteristic equation

P(s) =D(s) + KN(s) =0

”_.._8 breakaway points are those at which P(s) has a multiple root. Thus if s = a
is a breakaway point we can write

12] that concentrate on

1+ K

0

P(s) = (s — a)’Py(s)

where P (s) is a polynomial of degree k — 2 obtained by multiplying all the

factors except the factor (s — a)® arising because of the multiple root. (P,(s)

could conceivably have more than a double root at s = a, in which nmwm _u_A.a

could contain other (s — a) factors. This is of no concern.) _
The derivative of P(s) with respect to s is

P'(s) = 2(s — a)P\(s) + (s — a)?P}(s)
Thus, at s = a

P'(a) = 2(a - a)P(a) + (a—a)’P'(s)=0

.~= other words .m~ a breakaway point s = g the derivative of P(s)is zero. If s = g
1s any other point on the root locus, we can write

P(s) = (s — a)P(s)
where P (a) # 0. It thus follows that

P'(s)y=P(s)+ (s — a)Pi(s)
and hence .

P'(a) =P, (a) # 0

Thus the breakaway points on the real axis are distinguished from all other

" points on the real axis by the property that the derivative of P(s) goes to zero at

the _”:.om_avémv\. points. Note that P'(s) is a polynomial of degree k — 1 in s, and
hence m.ﬁ:._m 1ts roots poses a numerical problem only slightly less complicated
than finding the roots of P(s) themselves. If the latter are to be found with the

aid oTH. computer, it is hardly worth the trouble of finding the breakaway points
by solving for the roots of

P(s) =0 (4.34)

,.E:w reader may wish to verify that P'{a) = 0 at the breakaway points in the
Previous examples.
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Nyquist diagram The earliest graphical method investigating the stability of
linear systems was developed by H. Nyquist in 1932[1] and is based on the
polar plot of the loop transmission transfer function. To understand Nyquist's
method, recall that the condition for instability is that

I+ KG(s)=0 or G(s) = IWN (4.35)
for some value of s in the right half of s plane. Conversely, if there does not
exist a value s in the right half-plane for which Gis)=1/K, then we are
assured that the system is stable.’

For every point s in the right half-plane, there is a point z = G(s) in the z
plane. (If G(s) is a rational function, then for each value of s there is only one
value of z = G(s).) Thus the function G(s) ““maps” the right half of the s plane
into some region of the z plane. (Since G{s) is a continuous function and the
right half-plane is a contiguous region, the map of the right half-plane by the
function G(s) is also contiguous.) If the.region of the z plane that is the map of
the right half of the s plane under the function G(s) covers the point —1/K, the
system is unstable; if the map does not cover the point —1/K, the system is
stable. The two cases are depicted in Fig. 4.10.

The basic principle of the method of Nyquist is thus to determine whether
or not the map of the right half of the s plane created by the function G(s)
covers the point —1/K. Is it necessary to find G(s} for every s in the right
half-plane? The answer, fortunately, is no. There is a theorem in complex
variables which asserts that the map of the boundary of a region in the 5 plane
is the boundary of the map of that region in the z plane. Thus, to find the map
of the right half of the s plane under G(s) we need only find the map of the

4 z = G(s) plane 4 z = G{s5) plane

Map of Map of
right half of right half of
s plane s planc

1]
i @

(a) (%)

Figure 4.10 System with return difference F(s) = 1 + KG(s) is unstable if map of right half of s
plane covers the point —1/ K. (a) Stable system; (b) Unstable system.
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boundary of the right half of the s plane. The entire right half of the s plage ;
F_s_uo___.a_n.q_w of course. We get around that difficulty by finding the Bmv mwas_m
_mnmo moi_m:.n:_mw region bounded by the imaginary axis between |.anoa ﬂ :
in the semicircle of radius Q in the right half-plane. Then we pass mo :5:..;5
as (} » . If we are dealing with a proper rational function (i.e., the nume ator
degree is lower than the denominator degree) then as () » m?v -0 e
whole semicircle maps into just one point: G(s) = 0. , 50 the

.,_,o n.o:mﬁ:og.zuo map we start an excursion at the origin O and “walk"
the imaginary axis to the point A as shown in Fig. 4.11(a) at which s =j0 q.___,v
map oq.z:w —u.o_.zo: of the imaginary axis may have the appearance ow :.n
curve Q. - A’ in the G(s) plane as shown in Fig. 4.11(b). Then we walk arou M
:-w mQ.Eo_.qo_m to the point B. The map of the semicircle A - B is the %8
A'— B'. Finally we return to the origin O upward along the imaginary axi
along the path B — O and obtain the corresponding arc B'— O’ in SWQMN_”
plane. The map of the entire right half-plane is obtained by letting © - o0 which
has the .ﬂ.«non of shrinking the arc A'— B’ to a single point. Since we know that
the mnq:_o:...u:_mn arc maps into just one point, there is no need to bother with
that arc. It is enough just to walk up the imaginary axis. .

The map of the imaginary axis separates the map of the right half of the s
plane ?o._.: the map of the left half of the s plane. It is necessary of course to
know which points on the G(s) plane correspond to the points on the right half
of the s ﬁ._m:m..m_a which correspond to points on the left half of the s plane
.a.<o are aided in this process by the fact that the transformation z = G(s) mm.

conformal!™: angles are locally preserved.[14] Thus if we take our excursion

\b ;ﬁ

s plane 7= 3
0 p G(s) planc

\

(b)

Figure 4.11 How to map right half of 5 plane into z =

- G i, .
of right half-plane; (b) Map of semiciocly, (s) plane. (a) Semicircle approximates all
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along the imaginary axis with our right hand extended so that it lies over the
right half-plane, the corresponding excursion over the map of the imaginary
axis with the right hand outstretched is over the map of the right half-plane.
This principle is sufficient to identify the map of the right half-plane in all cases,
and is equivalent to Nyquist’s ““encirclement rule” which we shall give later on.

In Figs. 4.10 and 4.11 we drew the maps of the right half-plane (an infinite
region) as a finite region, because the entire right half-plane outside a semicir-

cular arc shrinks down to a single point. But what happens if G(s) has poles on-

the imaginary axis? In that case, of course, the map of the region near a pole

will result in very large values of z Since our excursion along the imaginary’

axis is not permitted, we might consider an excursion along a line in the left
half-plane parallel 10 and slightly left of the imaginary axis. This places the
imaginary axis itself into the right half-plane—the region of instability which is
where our previous classification of the region of instability would rightfully
place it. On the other hand one might, with some justification, argue that a
physical open-loop system is bound to have some damping present and hence
that the open-loop poles are near but not exactly upon the imaginary axis. This
means that an excursion up the imaginary axis is permitted, and that the poles
encountered on the excursion are to our left. Each approach will result in a
different Nyquist diagram. But there is no practical difference, because only the
part of the Nyquist diagram that is remote from the open-loop poles is needed
to assess the stability of a system. We adopt the approach of keeping the
imaginary axis poles to our right. Thus, suppose for example, the loop trans-
mission G(s) has a pole at the origin and a pair of complex poles on the
imaginary axis at @ = w, (as well as poles and zeros elsewhere in the s plane).
As we proceed along a path parallel to and near the imaginary axis, starting on
the real axis and going upward, we find that the map starts with a large real
number and then rapidly becomes a large complex number with phase angle of
nearly 90°. As the excursion continues upward the map of the line continues to
evolve in accordance with the total constellation of poles and zeros until the
line brings us near the pole and jo.. In the vicinity of this pole the phase angle
goes from a large number B at a phase angle of +90° to a large number C at a
phase angle of zero to a large number D at a phase angle of —90° and then to
zero as @ - 0, The mirror image of the contour shown in Fig. 4.12 is the map
of the lower half of the line parallel to the imaginary axis. As the line in the s
plane approaches the imaginary axis the points A’, B’, and D' move toward +co
as indicated. .

Although we have been concerned with the map of the entire right half of
the s plane, it is apparent that the boundary of the map produced by the
imaginary axis is usually the one feature of the map that is needed to determine
whether or not a system is stable. If the point —1/K is covered by the map of
the right half of the s plane, the map of the imaginary axis “encircles” the point
—1/K in a clockwise direction as w increases from 0 to . But if the map does
not cover the point ~1/K, the map of the imaginary axis does not encircle the
point —I/K in a clockwise direction. Thus, in most cases, only the map of the

s

i

T

Over zeros. If the excess is one, the plot approaches the origin along the negative
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splane |4 jw

z = G(s) plane

A’
. ¥
0

Figure 4.12 Nyquist diagram for transmission with poles on imaginary axis.

imaginary axis is drawn and this curve is calied the Nyquist diagram. The
Customary stability criterion is thus familiarly stated as follows:

Nyquist stability criterion A system having a return difference | + K G{s) is
stable if and only if the Nyquist diagram, i.e., the map of the imaginary axis,
does not encircle the point —1/K in the clockwise direction.

It must be noted that the encirclement test must be performed very carefully -
when the loop transmission G(s) itself has poles or zeros in the right half-plane,
as discussed in various texts on complex variables and systems.[14] If G(s) has
poles and/or zeros in the right half-plane it is safer to map the entire right
half-plane by G(s) and check whether or not it covers the point -1/K.

The behavior of the Nyquist plot as @ > 0 depends on the order of the pole
at the origin. If there is no pole at the origin G(0) is finite and is a real number.
It is positive unless, for some perverse reason, the dc gain G(0) is defined to be
negative. If there is a simple pole at the origin then as w -» 0, G(jw) > Cljw
which tends to infinity in magnitude and —90° ip phase. Similarly if there is a
double pole at the origin then, as w > 0, G(jw) - C/(jw)? = ~C/w? which
tends to infinity in magnitude and —180° jn phase. And so forth. The order of
wrn pole at the origin is known as the system “type” and, as will be discussed
n Sec. 4.7, governs the ability of the system to track an input in the form of a
polynomial time function without steady state error.

As w - 0, the behavior of the Nyquist plot depends on the excess of poles
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imaginary axis because the G(s) behaves as C/jo > 024-90° If the excess is
two, the Nyquist plot approaches zero along the negative real axis because G(s)
behaves as C/{(jw)> = 0 £—180°. And so forth.

For a system of high order it is possible for the Nyquist diagram to have the
appearance shown in Fig. 4.13 in which the map of the imaginary axis of the s
plane crosses the real axis of the G(s) plane several times. It is not immediately
obvious which of the enclosed regions are maps of portions of the right half of
the s plane and which are maps of the left half. The rule about walking up the
map of the imaginary axis with the right hand outstretched is helpful in this
case. Following that rule we see that regions @, 3, and () belong to the right
hall-plane but regions D and @ belong to the left half-plane. This means that
as K is increased (—1/K - 0 along the negative real axis) the sysiem is stable
until ~1/K crosses into region 3 when the system becomes unstable. It
remains unstable until K is raised sufficiently to make —1/K fall into region @),
which is a region in which the system is stable. It remains stable until K is
further increased to bring ~1/ K into region (9, when the system again becomes
unstable and remains so as K - o, If the gain K is chosen to put —1/K in

/ 4w

|

T
Y
Sv

Figure 4.13 Nyquist diagram of a condi-
tionally stable system. (System is stable if
—1/K is in regions ! or 4.)
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region @ the system is said to be conditionally stable. A conditionally stable
system is generally undesirable because of the danger that a reduction of gain
as well as an increase can make the system unstable. Sometimes there is no way
to avoid conditionally stable systems, but it is often possible to design g
compensator to shape the Nyquist diagram to avoid having conditional stabi-
ity. Methods that can be used to accomplish the required shaping are discussed
in textbooks on frequency-domain methods of control system design.[11, 12]

The Nyquist diagram is used not only to assess the stability of a system {(by
determining whether the map of G(s) covers the point ~1/K, but also to
investigate system ‘‘robustness” which is'a measure of how much the system
can change without becoming unstable. The further away the point ~1/K is
from the map of the right half-plane, the more the system transmission (i.e., the
map of the right half-plane under G(s)) can change without endangering
stability. Hence it is desirable that this distance be substantial. A quantitative
measure of this distance is the gain margin as discussed in Sec. 4.9 which deals
with robustness in general.

Bode plots The Nyquist diagram can be regarded as a polar plot of the
magnitude and phase of G(s) when s = jw, that is, a polar plot of the magnitude
and phase of G(jw) with the frequency w serving as a parameter: The same
information can be presented in a pair of plots: one of the magnitude and the
other of the phase of G(jw), each as a function of frequency w. These are
known as the Bode plots of G(s). In particular let

Gljw) = G(jw) e/t

where |G(jo)| and 65(w) are known as the magnitude and phase functions of
the loop transmission G(s). Instead of plotting |G(jw)| it is customary to plot

D(w) = 20log,, HOCEV_

Regardless of the units of G(s), the units of D(w) are invariably decibels
(abbreviated dB).-Since there is no physical significance to the logarithm of a
quantity that is not dimensionless, i.e., the ratio of two physical variables of the
same type (e.g., voltage out/voltage in, etc.} it is not strictly proper to use the
decibel notation unless G(s) is a dimensionless ratio, i.e., unless the input and
the output are the same physical type. But this improper usage is universally
condoned and accepted. ,

The plot of D(w) vs. w is known as the Bode amplitude plot and the plot
of Bg(w) vs. @ is known as the Bode phase plot.

The Bode plot for a transfer function that has only real poles and zeros is
particularly easy to construct graphically. In particular, consider a system

having a loop transfer function
A_ +¢:.T+$
Z Z

()

G(s) = G, (4.36)
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This form of G(s) is especially convenient for Bode plots because each factor in
the numerator and the denominator is unity at s =0 and hence the dc gain,
G(0) = Gy is explicitly exhibited. When s = jw

A_ n_...m.l»v...A—;l\\ISv
Z Zt

DC.EVH Qc o i
(55
P P
and hence
© 291/2 @ 27t/2
(] L)
. z z
_mﬁ.\&: = _Qc_ n_u 27172 n”u /2 A&.wﬂv
TG
P Pr
Thus
w 2 w 2
D(w) = 20log |Gy + 101log _+Anlv +-+-+ 101og H+Am|v
1 ]
w\? w\?
=101og _+A|v H_ - —10log _+Alv (4.38)
4 Pu

and (for G, > 0)

6;{w) =tan™’ A{nuv +---+tan”! Amv ~tan”' Amv . tan~' Amv (4.39)
Zy 2 I 4| P

(If the dc gain G, is negative, a 180° phase shift must be added to (4.39).) These
results may be interpreted as follows: (Fig. 4.14.)

The log-magnitude plot D(w) is the sum of the log-magnitude plot of each
contributing factor and the phase plot is the sum of the phase plots of each
contributing factor.

With increasing frequency, the contribution of a zero is an increase in both the
log-magnitude and the phase; the contribution of a pole is a decreaset in
both log-magnitude and phase.

The contribution of a typical zero or pole is shown in Fig. 4.12. 1t is seen
that at the frequency @ = z or w = p; the magnitude is exactly twice its value at
dc (@ = 0) and the phase shift is exactly 45°. As the frequency is further increased

T The phase relation is valid only when the contributing pole or zero is in the left half plane, that
is, p, or z; is positive. If the zero or pole is in the right half plane, then z; or p; is negative, and the
phase contribution is opposite. Bode[2] has called such poles or zeros nonminimum phase.
Nonminimum phase poles are indicative of an unstable open loop system, of course. The effect of
open loop zeros is more subtle, however, and is discussed in greater detail in Note 4.7.

ke

G
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Tl | |
5w

]
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S
h
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.
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T
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Figure 4.14 Bode plots for a zero and for a pole.

’ s
(a) G(s)= —+M (b} DAHVHQ

the contributions to log-magnitude plots are

w

Di(w) > 101log Amv

v for a zero
z;

20 log A

Z;

2
Di(w) > —10log va = ~201log va for a pole

Thus, if a logarithmic frequency scale is used D; is asymptotic to a line having
a slope of 20 (dB) for each tenfold increase in frequency, that is, “20dB per
decade.” The slope is positive for a zero, and negative for a pole. The asymptote
intersects the logarithmic frequency’axis at @ = z; or w = pi- At these frequen-
cies, known as the *“corner™ frequencies, the exact gain is =10 log 2 = 3.010dB,
so these are also known as the “3 dB” frequencies.

The phase contribution from each factor tends to +90°, (Positive for a zero;
negative for a pole.) :

The log-magnitude and phase curves for the overall systern are obtained by
simply adding the curves of each contributing factor. Thus, for example, the
log-magnitude and phase curve for

. :,+:A_+Mv

m:vuA:wX:wx_Jr%v

has the appearance shown in Fig. 4.15. The maximum deviation from the
straight line approximation is 3 dB.
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Figure 4.15 Bode plot for

(s+1){(s/5+1)
(s/2+1)s/10+ 1){s/20+ 1)

G(s) =

A pole or a zero at the origin is treated slightly differently, because the log
magnitude is not finite as w > 0. A zero at the origin means that D(w) > —©;a
pole at the origin means that D{w) - +c0, These are the plots for a corner
frequency of 0; in other words a zero at the origin contributes an increasing
log-magnitude line with a constant slope of +20 dB/decade; a pole at the origin
contributes a decreasing log-magnitude line -with a slope of —20 dB/decade.
Each passes through 0 dB at w = 1. The phase angle due to a pole is a constant
of —90 degrees and the phase angle contribution of a zero is a constant +90
degrees.

The Bode plots for a transfer function G(s) that has complex poles or zeros
is more complicated, because the straight-line approximation as illustrated in
Fig. 4.13 is not applicable since a transfer function with a complex-conjugate
pair of poles will include a factor of the form

1

A= 4.40
O.Ahv _ +MNAM\EGV+AM\SQVN A v
The log-magnitude and phase functions corresponding to (4.40) are
2 4F1/2
Di(w)=—-20log{ 1+ EmfuuAhv + As.wv g
Wy wWq
(4.41)

—(e/wo){ v

0:(w) = tan™ AI_ o/
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Normalized frequency, w/w,
Figure 4.16 Bode plats for second-order system
g
$?+ 2wgs + w?

G(s) =

ﬁ.o. log-magnitude and phase curves vs. normalized frequency w/w, are
shown in Fig. 4.16 for various damping factors ranging from ¢ = 0.1 (lightly
damped) »8 {=1.0. It is seen that as the damping becomes very small, the
log-magnitude becomes very large in the vicinity of the natural frequency @ = w,,
and the phase shift rapidly changes from angles close to zero to angles close to
180°, crossing through exactly 90° at w/w, = 1.

The m_.mazo:ow o, at which the peak (often called a resonance .um&&._.: the
log-magnitude plot occurs can be found by taking the derivative of (4.41) with

i
n
H
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Figure 4.17 Gain at resonance of

2

G(s) = 0 (@, = VT = 27w,)

s+ 2lwes + wi

respect to x = (w/w,)” and setting it to zero. It is found that this frequency is

given
w, =1 -2lw,

which means that there is no resonance peak for ¢ > _\/\m. For { < _\,\M, the
gain at resonance is given by

Di(w) = -20log[4*(1 -~ {*)]  (dB) (4.42)
a graph of which is shown in Fig. 4.17.

Example 4E Hydraulically actuated gue turret (continued) In Example 4B we found the
transfer function between the input u and the output angle @ of the hydraulically actuated gun
turret. Using the aumerical data given in Example 2D for azimuth control:

K,=943 L,=10 J=790 K, =846 x10°
w, =459 and  K,,=633x10"¢
we find numerically that

100 980
s(s® + 140.25% + 10 4495 + 100 980)

H(s) = (4E.1)

L
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H{s)
u 10° 8
s{s® + 14052 + 104495 + 10%) >

Figure 4.18 Closed-loop control of gun turret.

The root-locus equation for the closed-loop process {see Fig. 4.18) is

100 980K

t+
s(s® + 140.25% + 10 4495 + 100 980)

(4E.2)
The open-loop poles of the process are at s =0 and at the roots of the cubic factor
s* + 140.2s% + 10 4495 + 100 980. The latter are found numerically to be located at
s=-11L2

5= —64.5 % j69.6

Il

Since there are four poles and no (finite) zeros of the transfer function, the root loci all
80 to oo parallel to lines at +45° and £135° angles from the real axis.

69.4

K =69.3 =268

| |
—&0 —60) T 200 7

w=-268

Figure 4.19 Root-locus plat for feedback controf of hydraulically actuated gun turret.
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To find the frequency and gain for crossings of the imaginary axis we set s = jw in the
characteristic equation )

s+ 140.25° + 1044952 + 100 980s + 100 980K = 0 (4E.3)
with s = jw this becomes
©* — j140.20° - 10 44902 + j100 980a + 100 980K = 0

or, on equating the real and the imaginary parts to zero,

w* — 1044902 + 100 980K =0 (4E.4)
—140.2> + 100 980w = 0 {4E.5)
~
0

@ Slope
T Ll = -40 dB/decade
QO

—40 . -

-
Slope = -20 dB/decadc
-6t ! ] 1
0.1 1.0 10.0 100.0
Frequency, Hz .

451
B
[N
o
§ 90 _
m 1.0 10,0 . 100.0
o} Frequency, Hz

-135
-180-

Figure 4.20(2) Bode plots for factors of G(s).

G(s) = ! )

() 5 s (s
.A_+:.NvT+on.mmvcm+Amv w
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The second equation gives w = 0, the starting point of the locus, and

w =+100980/140.2 = 26.8

and this value of @ when substituted into (4E.5) gives K = 69.4. The same value of X could
have been obtained by use of the Routh or the Hurwitz algorithm. (See Prob. 4.5.)

The root locus plot for this system is shown in Fig. 4.19.

The transfer function, in factored form, is

100 980
s(s + 11.2)(s* + 1295 + 9016)
1

s(1+ s/11.2)[1 + 2{0.68)(s/95) + (5/95)%]

G(s) =

The Bode plots for each factor in G(s) are shown in Fig. 4.20{a}; the composite is shown in
Fig. 4.20(b).
The Nyquist plot corresponding to G(s) is shown in Fig. 4.21.

+10.0 T L
-20 dB/decade

~20.0f- . ~40 dB/decade

=50.01~ 80 a—w\&nﬂan

Gain. dB

—-80.0-

-110.0

-140.0 b | 1 L | S 1 1 1
0.1 0.3 1.0 3.2 10.0 31.6 100.0

Frequency

-T2

F

—144

=216

Phase. deg

—258

~360 T i | | I I
0.4 0.2 1.0 3.2 10.0 36 1000

Frequency

Figure 4.20(5) Bode plots for gun turret.
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-4-0.1
-.2

1-0.3

Figure 4.21 Nyquist diagram for hydraulically actuated gun turret.

Example 4F Missile dynamics.The motion of a missile about its pitch axis was shown in
Example 3F to be given by

+Zq 2
TTyety

4= M,a + M6 (assuming M, =0)

]

@
(4F.1)

where « is the angle of attack
q is the piich rate
8 is the control surface deflection

The control susface is rotated by means of an actuator, the dynamics of which is typical of a
first-order lag: (Fig. 4.22)

muw?umv (4F2)
T

where u is the input to the actuator.

A missile guidance system typically issues a guidance command in the form of the desired
acceleration ay, normal to the missile velocity vector. The function of the autopilot, the design
of which shall be considered in several examples later in the book, is to make the achieved *
normal acceleration ay “track” the commanded acceleration with good fidelity. It is thus
appropriate to deal with the error e between the commanded and the achieved normal

FREQUENCY-DOM

] %

Figure 4.22 Missile attitude dynamics with normal acceleration as output.
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acceleration. The latter is given by
ay = Zoa + 26 (4F.3)
The transfer function from u to ay is determined to be:
1 Zs?+ ZM, ~ Z,M,
s+ 1 Z,

s+ 25— M,
v

H(s) = (4F.4)

A representative set of numerical values for a hypothetical highly-maneuverable missile are:

V = 1253 fifs
Z, = —4170 fifs?
Zy = —1115fi/s?
M, = —248 rad/s®
M, = —662 rad/s

7=.0Is

For these values we obtain

—1115(s* - 2228)
(0.01s + 1){s® + 3.33s + 248)

H(s) = (4F.5)

The zeros of the denominator are at

s=-100
and at
5= —1.67 £j15.65
and the zeros of the numerator are at
s = %472

Note that the dc gain of H(s) is positive: A positive input produces a positive response.
But for high frequencies H(s) » —1115/(0.01s + I) which produces a negative respanse for a
positive input. The change of sign in the transfer function as the frequency is increased is
another consequence of the right half-plane zero of H(s) and is the source of apparent
paradoxical behavior of the system. One paradox is in the root locus, shown in Fig. 4.23. It is
observed that as the gain is increased from zero in the positive direction the one branch of the

jw

- 20

K=11.13

|

L L o] o L | L i

A

100 -80 -60 —40 -20 20 40 60 80

=20

Figure 4.23 Root loci for missile dynamics. K increasing.
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root locus crosses the imaginary axis at s = 0 and then continues to the real root as s = 47.1.
This behavior is clear from the characteristic equation:

s+ (100.33 + K)s? + 5815 + 24 800 — 2228K = 0

where
K =111500K
The coefficient of s" vanishes at
- 24800
=——=11.13
K 2228

and hence there is a pole at the origin for this value of K.

The graphical methods of Nyquist and Bode have an advantage over the
algebraic Routh-Hurwitz methods: They are not restricted to rational transfer
functions and thus not limited to systems characterized by ordinary differential
equations. Thus they are applicable to systems characterized by partial-differen-
tial ‘equations and pure delays. The following example provides a frequency-
domain explanation for the instability exhibited (as found in Chap. 1) by a
system with a delayed output. .

Example 4G Pure delay In Chap. 1 we considered a system whose output () is'a faithfut, but
delayed, version of the input u{1)
y)=u(t-T) {4G.1)
The Laplace transform of the delayed input is
a L)
y(s) = .— e *u(t -~ T)dt = ‘— e U Dy(7) dr (4G.2)
0 . -7
On the assumption that u(¢) is zero for ¢ < 0, (4G.2) becomes
@
y(s)=e" ¢— e u(r) dr = e~*Tu(s)

4]

Thus, the transfer function of a pure delay is

Qwhv =¢ T
with 5 = jw
Gljw) = g7
Thus .
[G(je)l =1
and
f{w) = —oT

The Nyquist diagram is thus a circle centered at the origin as shown in Fig. 4.24(a), and
the closed-loop system, having the return difference

) T(s)=1+KG(s)=1+ Ke™7 (4G.3)

is unstable for K > 1, as was found in Chap. 1. The Bode diagram has a constant nawz_.ﬁa
of 1 (0dB) and a lincarly decreasing phase (which does not look linear on a logarithmic
frequency axis as shown in Fig. 4.24 for T = 0.01s).

P s

P SaEte g i
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Figure 4.24 Stability plots for pure delay G(s) = e™ ™. (a) Nyquist plot; (5} Bode plot.

4.7 STEADY STATE RESPONSES: SYSTEM TYPE

Stability is the control system designer’s first concern. With stability assured,
interest shifts to the nature of the response of the system to various types of
reference inputs. (For the present we consider only single-input, single-output
processes. The general multiple-input, multiple-output case is treated in Sec.
4.10.)

A system designed to follow a reference input, rather than merely to return
to equilibrium, is generally known as a *tracking™ system, and has the
configuration shown in Fig. 4.25. The output of the system is y and the input to
the open-loop plant is . The difference between the desired reference input is
called the system error

e=rn—-y
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Figure 4.25 Error driven feedback control system.

In the simplest type of control system, the system error is multiplied by a
gain K to produce the control input u. Since the input to the plant is
proportional to the error, if the error becomes large it will produce a large input
which, because of negative feedback, will tend to drive the error to Zero.

To analyze the behavior of the system quantitatively, consider the transfer
functions from the input to the error e and to the output y. Using the
block-diagram algebra of Sec. 4.3, or any other convenient method, one can
easily determine these transfer functions

I - )|
:mE‘l [T KG(s)  y,(s) (4.43)
He(s) = KG(s) _ vls) (4.44)

1+ KG(s)  v.(s5)

Note that the return difference 1 + KG(s) is in the denominator of the
transfer function (4.43) between the reference input and the error. To make the
error small, we would like the return difference to be large. With the plant
transfer function G(s) given, the return difference 1+ K G(s) can be increased
by increasing K. For reasons of stability, however, we usually can’t make K
arbitrarily large. Therefore it is not possible to design a system that can track
every reference input with arbitrarily small errors. As a matter of fact, we might
not be very happy with a system that does so. The reference input typically has
rapid changes and noise which often one might not want to track with perfect
fidelity.

One measure of the performance of a system is its steady state behavior
when the reference input to the system is a polynomial time function:

C, C

() =pult) = Ci+ St 4 - 4 =2y (4.45)
2 m!

It is useful to formalize this measure of performance with the following:

Definition A system is of “type m” if it can track a polynomial input of
degree m with finite but nonzero steady state error.

We shall shortly discover that a system of type m can track a polynomial of
degree m — 1 (or less) with zero steady state error, but that the error in tracking
a polynomial reference input of degree m + 1 (or greater) becomes infinite.

MRS e

1
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The steady state behavior of the error is determined with the aid of the
Laptlace transform final-value theorem [4]:

Steady state error = lim e(t) = lim se(s)

100 =0

where, by (4.43)

1

— 4.46
_+wm€<,€ (4.46)

e(s) =

When the input y,(f) is the polynomial time function p,,(1), then its Laplace
transform

ﬁ.— QN n§+—
= =t cee Crir # 0
<~A.m.v Uﬂmhv 5 + hu + . h§+_ A 1 v
= Cis™ '+ Cos™ 4+ Gy (4.47)
,w:.l;
Thus, from (4.46),
1 Cis™ '+ -+ Cpay (
= 4.48)
se(8) = 1T k60 "

The limit as s -~ 0 of se(s) is infinite if G(0) is finiie, because of the presence of
the factor s™ in the denominator of se(s) given by (4.48). The only way that, as
5 - 0, lim se(s) can be finite is if G(s) has a pole of the proper order at s = 0,
that is, if G(s) is of the form

N(s)

Gls) = s?D(s)

(4.49)

where neither N(s) nor D(s) have zeros at s =0. When G(s) is of the form
(4.49) then

D(s) Cis™ 4o 4 Cpay

hmﬁhv = m
N(s) s
1+ N|uuom.&
S D) 450
= s"D(s) +~AZA3AQT¢, + + Crs1) { )

From (4.50) we infer the following:

If p>m, lime(s)=1limse(s)=0

t+00 s—=+0
If p=m, lime(:)= _:w se(s) is finite but nonzero (4.51)
{—~oo K ad

If p<m, lime(t)=Ilimse(s)is infinite

00 50
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We thus conclude that:
The system type is equal to the order of the pole of G(s) at 5 = (.

Since a pale at the origin represents a perfect integrator, the system type is
often defined as the number of cascaded integrators in the system.

It should be noted that the presence of a single integrator in the open-loop
plant implies that it is stable, but not asymptotically stable, and that more than
one integrator means that the open-loop plant is unstable. Thus we see that a
closed-loop system, having the ability to track a polynomial input, cannot result
when the open-loop plant i asymptotically stable! This should come as no
surprise. The closed-loop system, after all, is error-driven, and we are insisting
that the steady-state error go to zero. This means that the control input u also
becomes zero in the steady state. But, at the same time we are demanding that
the output be nonzero! To sustain a nonzero output with a zero input is not one
of the properties of an asymptotically stable system.

It is emphasized that the system type is determined by the order of the pole
at the origin in the open-loop - process, and not the closed-loop process. A
properly designed closed-loop process must invariably be asymptotically stable,
and thus the closed-loop transfer function must have all its poles in' the left
half-plane and none on the imaginary axis, which includes the origin.

The steady state error that results when the polynomial input is the same
degree as the system type is determined with the aid of (4.50)

,Q_UAS forp=m=0
. . D(0) + KN(0) P
lim e(t) = lim se(s) = (4.52)
1> 50 n§+_ UAOV £ _ =1
KN(D) orp=mz=

If we define the “fractional error,” or “error ratio,” as

1
lim e(t)

n4-=+_ o

Fm =

then, from (4.52) we determine the fractional error for a type m system (when
the input is a polynomial of degree m) .

1 1

1+ KN(0)/D(0) _ 1+ KG(0)

T = (4.53)
1 1

KN(0)/D(0)  KG(0) "

Thus the steady state error ratio decreases as the open-loop dc gain KG(0)
increases. Hence if the requisite number of integrators is not present to make
the plant of the desired type, the steady state error ratio can be reduced (but not
brought to zero) by making the loop gain KG(0) high. But of course it can't be
made arbitrarily high without compromising stability.

(1%
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D(s) j—= G .
g Control (s)

v

Figure 4.26 Error-driven feedback control system with compensator.

If closed-loop system tracking performance of a particular type is required,
but the existing open-loop plant type is not sufficiently high, the required
number of integrators is supplied by means of a *“compensator”; a dynamic
system having the transfer function D(s) placed between the measured error
and the input to the original plant, as shown in Fig. 4.26.

The most common type of compensator is the so-called PI (proportional +
integral)} compensator
K, K, + K,s

D{s)=—+ K, =

K s
The pole in D(s) raises the type of the open-loop system.

Before the era of digital computers, it was difficult to construct a perfect
integrator: a device which maintains an absolutely constant output indefinitely
in the absence of any input. The output of a physical device called an integrator
would tend to drift, either to zero or, worse still, to infinity. The quality of an
integrator was measured by the time it could be expected to hold a constant
output. High-quality integrators needed to control processes whose natural time
constants were of the order of several hours (typical in process control) were
very expensive and marginally reliable, hence PI controls were bothersome. The
digital computer now provides a means for realizing a perfect integrator, and
the hardware problems of PI control have disappeared.

In principle, the compensator can provide a double pole at the origin thus
raising the open-loop system type by 2. This is generally infeasible in practice,

however, because the output of such a compensator is an increasing function of -

time even when the error is zero. This output is the input u to the original plant.
Hence the physical input to the plant is constantly increasing in magnitude.
Sooner or later a limit will be reached at which point the physical input to the
plant will have to stop increasing: the control input *saturates.” The input
demanded by the compensator will not be physically attainable. This fact of
saturation needs to be taken into account in the system design. The system
should not be required to exhibit behavior of a type of which it is physically
incapable.

In classical system designs, the integrators needed to raise the system type
are frequently included in the plant model. The designer is concerned with
shaping the dynamic behavior of that part of the compensator having no poles

FREQUENCY-DOM iNALYSIS 161
.m. the origin. With the state variable approach to be developed in this book, the
integrators required in the compensator emerge in the normal design E.onn.mm

4.8 DYNAMIC RESPONSE: BANDWIDTH

Another consideration in control system design is dynamic response. Not only
must the closed-loop system be stable and reach the required steady state value
eventually, but it cannot take forever to get to where it’s going, and it should
not be too oscillatory.

The dynamic characteristics of the system are typically defined in terms of
the response (o a unit-step input. The *step response” of a typical system is
shown in Fig. 4.27. The parameters of major interest are as follows:

Overshoot Difference between peak value and steady state value;

Rise time Time for output to reach a specified fraction (usually 1 — e~ = 0.632)
of the steady state value.

In addition to these parameters, often other parameters are of interest such
as delay time (the time that it takes for the output to “get started”—to reach
say 10 percent of its steady state value), “peak-time” (time to reach first peak
in a system with positive overshoot).

There is no universal agreement on the definitions. For example, in some
fields (e.g., process control) rise timé is defined as the time it takes for the process
to go from 10 to 90 percent of its final value. Or it may be defined as the time it

takes to get to its steady state value the first time. (This is only meaningful in a
system with overshoot.)

Overshoot \./ o

S

y(1)

Delay time —»| T ) Time

Rise time

Figure 4.27 Characteristics of dynamic résponse.
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Dynamic performance requirements of a system are typically specified in
terms of the maximum permissible rise time and overshoot. These parameters
are readily measured on a time-history plot of the output of an actual system or,
for design purposes, on the output of a simulation of the actual system. But they
are not readily calculated from the transfer function of the system. One way of
avoiding the calculation problem is to define the response time as the centroid [

of the impulse response of the system

. foth(rydi
TR di (4.54)

The physical significance of the centroidal response time 7 is that it is the
location of a single impulse which has the same effect as the actual system. An
impulse located at t =17 would give rise to a step occurring at that time, as
shown in Fig. 4.28. This interpretation of the response time has a certain
intuitive appeal.

The response time f cannot be determined by simply inspecting the step
response of the system. Precise calculation of  from recorded data would
require numerical integration of the step response: not a difficult task for a
digital computer but not as easy as picking one or two points off a curve. The
definition of response time by f has decided advantages with regard to anatysis,
however: It can be calculated direcily from the transfer function H(s) without

Impulse

response - 1)
i Time

Siep

response,

y(t)

l_ | .

i Time

Figure 4.28 Definition of centroidal response time.
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n for the step _.amvonmn.oa the impulse

the need for first determining the expressio
function is the Laplace transform of

response. To see this, note that the transfer
the impulse response

H(s) = _.8 e “h(t) di (4.55)

[\]

// H(0) = _.3 h(t) dt (4.56)

0

Thus

Now take the derivative of both sides of (4.55) with respect to §

0

H'(s) = dH(s)/ds = \_» te "h(1) de

[}

Thus
—H'(0) = .— th(t) dt
Thus
= tll_..AS 4.57
i= HO) (4.57)

In words, the centroidal response time f is the ratio of the Laplace transforms
:_—noammzﬂo"rmqm:m?q ?:&o:

of the derivative of the transfer function a
itself; 7 is thus a measure of how fast the transfer function decreases at the

origin.
7 using (4.57). For this reason it is a useful

It is very easy to calculate ? :
definition notwithstanding the possible difficulty of determining 1t ..q.oB
f is very close to the rise time

measured data. In typical systems, moIeover, ¢
calculated using other definitions. in a first-order system, for example, with

“o (4.58)
5 -+ Wq

H(s) =

it is found that (4.57} gives
1 (459)

Wo

W“

The step response corresponding to this transfer function is

T Wo | — ot
a() =% TieL t-e

! of its final value at foe3 given by

The step response reaches 1 — e~

woloss = 1
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Thus, for a first-order system, the centroidal response time and the 63 percent
response time are exactly equal. (The response of a first-order system is the
basis of the definition of the 63 percent response time.)

The centroidal response time is easy to calculate for a second-order system
with

wd

H(s) =
(s) 574 2wys + w?

(4.61)
Using (4.57) it is found that
_2

wy

f (4.62)
This means that the response time increases with the damping factor {. For two
systems having equal natural frequencies, the system with the targer damping
factor has the larger response time, which agrees with our intuition.
Calculation of the step response corresponding to H(s) as given by (4.61)
and then solving for #54;, is a messy business. The step-response curves them-
selves have the appearance shown in Fig. 4.29. The 63 percent and the
centroidal response times are both shown graphically vs. { in Fig. 4.30. They

AT T
16 \\ \c._w.._w \
L Jos ._.M \ /
N 0.6 _v “\\\///

Siep ) ob— y
response 0.8

i A= ,N
A ZGRNE AR

0 1 2 3 4 5 6 7 8 9 10 11 12
@yt
Normalized time

Figure 4.29 Step response of second-order system

2

Wg

G(s) =
(=) 24+ 28wy + wl

YT
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.nlm Figure 430 Response time of second-order
5 system
2 i ! 1 | )
0 0.5 1.0 1.5 2.0 wg

H(s) =

Damping factor, ¢ 52+ 2wy + ©f

agree exactly at a damping factor £ = | and are within about 20 percent of each
other for the range of damping factors of practical interest: £ > 0.7,

For very low damping factors, the centroidal rise time is much smaller than
the 63 percent rise time, but neither gives a very good indication of system
behavior.

Calculation of the centroidal rise time of systems in tandem (cascade) is
instructive. Suppose a system H(s) comprises two subsystems H,(s) and H(s) in
tandem

H(s) = Hy(s)Hy(s)

Then
H'(s) = Hi(s)Hx(s) + H(s)H,(s)
Thus
Hs) _ Hils)Ha(s) + Hi(s)H,(s) _ Hi(s) | Hi(s) (463)
H(s) H,(s)Ha(s) Hi(s)  Hy(s) A
Thus, on evaluating (4.63) at s = 0, we obtain
. =L+ (4.64)

i.e., the centroidal response time of a tandem combination of systems is the sum
of the centroidal response times of each. This also agrees with our intuition:
There is a lag in going through the first system, and the second system adds an
additional lag, so we would expect that a formula like (4.64) will hold, at least
approximately, for any reasonable definition of response time.
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Finally, consider the effect on response time due to feedback. Suppose H(s)
is the transfer function of a closed-loop error-driven control system

H(s) H:\%ﬁmwi
Then
Hi(s) = [1+ KG(s)]KG'(s) — RNQQ:AD,QU _ KG'(s) }
[T+ KG(s)] [t + KG(s)]
and

H'(s) KG'(s) - 1+ KG(s) 1 G'(s)
— > = (4.65)
H(s) [1+ KG(s)]* KG(s) 1+ KG(s) G(s)
Thus, on evaluating (4.65) at s = 0, we find the closed-loop centroidal response
time given by

1
fop = ————rT, 4.66
fee =17 KG0) ™ (4.66)

where [ is the response time of the open-loop plant. We see that another
benefit of feedback is the reduction of the system response time: The closed-
loop response time is equal to the open-loop response time divided by the dc
return difference.

The centroidal response time can readily be calculated from the state-space
representation of the transfer function

H(s) = C(sI — A)"'B (4.67)

where C is a I X k matrix and B is a k X | matrix, so the product C{sf — A)'B
is a 1 X | matrix. The dc transmission is

H(0)=—-CA™'B

(We assume that the system (4.67) is asymptotically stable, which assures that
A"! exists.) To find H'(0) we write

H(s) = C®(s)B
where

O(s) = (sI — A)'
is the resolvent of A. Then

H'(0) = C®'(0)B
Now

(sI -AY®(s)=1
Differentiate with respect to s

o(s) ~ AD'(s) =0
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or
O'(0) = A7'D(0) = —A~?
and
H'(0) =—-CA™’B
Finally
7= % - i (4.68)

(1t is legal to divide by CA™'B because CA™'B is a | X | matrix.)

One is tempted to cancel C and B in the numerator and denominator of
(4.68) and thereby obtain an expression for 7 in terms of only the dynamics
matrix A. This is not legal, of course. Even if it were legal, the final result
wouldn't make any sense because the result would be 7 = A~' which is equating
a matrix to a scalar. Is there any way that something like this equation could
make sense? The answer is yes, provided that an appropriate generalization is
used. The quantity a3

i=(lAa"/1An? A (4.69)

has been studied by Bass[15] For a further discussion of this, see Note 4.3.

In the frequency domain, the dynamic behavior of a system is characterized
by its bandwidth. The reader has very likely formed an intuitive notion of
bandwidth by reasoning as follows: Every input can be regarded as comprising
components at various frequencies; a rapidly changing input means that it has
a large high frequency content, while a smooth, siowly varying input has a
relatively smaller high frequency content. Thus if the control system is to
faithfully reproduce an input that is changing rapidly, it must be capable of
faithfully reproducing inputs at high frequencies, i.e., to have a large band-
width. On the other hand, if the input is slowly varying, the control system does
not need a high bandwidth. A step change (i.e., a discontinuity) in the input has
a large amount of high-frequency content: to reproduce it faithfully (with a
short rise time) requires a high bandwidth. If a short rise time is not required
then neither is a high bandwidth. Reasoning thus one reaches the conclusion
that there is an inverse relationship between bandwidth and response time.

In communication systems where data is transmitted by modulation of a
carrier, the bandwidth of a system is generally defined as the width of the
resonance curve between the ““half power” frequencies—i.e., the frequencies at
which the gain is “3 dB down” from the value at resonance. In a control
system, however, the oscillatory response characteristic of a resonant system is
highly undesirable. If well designed, a closed-loop system will have a frequency
response characteristic of the Bode plots of Fig. 4.16 with a damping factor {
greater than about 0.4 or 0.5. The resonance peak, if any, is very small and the
frequency response typically is very flat until a critical frequency is reached, at
which point it begins falling off quite rapidly. A system of this type is called low




029

4]

USC Neuroscience Program

54 FAX 213 7405687

TUE 13

01/26/99

AUD L DIIILM LEDIUN

pass—it passes low frequencies without substantial mznj:m.:o:|m=a its gzm-
width is usually defined as the frequency at which the gain is below the dc gain
by a factor of V2. In other words

HGW)| 1
RO | 2
or
U2
[HGWIE 1 (4.70)
HY0) 2
where W is the bandwidth of the system,
In a first-order system
H(s) = s+ awy
{4.70) becomes
w? _ 1 _ M
W+ w} Ajew\:v~+_ 2
Wy
or
W = w, A&.x:v

We already knew this from the nature of the Bode plot for a first-order system.
For a second-order system ’

wh
24 2fwes + wl
The bandwidth W is the solution of

272 2
T
(G1Y Wy

Am\zvN =1-224+J(1 -2+ 1 (4.72)

wo

H(s) =

or

A plot of the bandwidth of a second-order system vs. damping factor is
shown in Fig. 4.31. For purposes of comparison, the reciprocal of the nnzz.omm_u_
response time 7 is also shown. It is observed that for the useful range of damping
factors ({ > 0.4) the reciprocal of 7 is a lower bound on the bandwidth:

Wi> 1

In other words the product of the bandwidth and the centroidal response is

FREQUENCY-DOR. - ANALYSIS 169
m.o‘\
1.5
Iw,n 1.0 \
5 W
0.5}~
i
Figure 4.31 Bandwidth of second-order
_ | . i system
0 0.5 1.0 1.5 2.0 wj

H(s) =
Damping factor ¢ (s) 4 2wy + w?

always greater than 1—a sort of time-frequency uncertainty principle. Note,
however that W7 is never much greater than 1. Thus we can safely say that the
product of bandwidth and response time, which is exactly 1 for a first-order

system, is approximately 1 for properly damped second-order systems. The
relationship

Wi=1 4.73)

turns out to hold for a :.mm:n_. order as well, and reinforces our intuitive
conception of the reciprocal relationship between bandwidth and response time.

4.9 ROBUSTNESS AND STABILITY
(GAIN AND PHASE) MARGINS

In designing the control law for some process we deal not with the physical
process per se but rather with a mathematical model of the process. The control
law will be acceptable only if the mathematical model predicts the behavior of
the physical process reasenably well. But no mathematical mode! can predict
the behavior of a physical process exactly; there will always be some dis-
crepancy between the actual behavior of the physical process and that predicted
by thie mathematical model. And the discrepancy may increase with time owing
to normal aging and deterioration. Some uncertainty of the physical process is
a reality that the control system engineer must contend with.,

One of the well-known advantages of feedback is that it confers a degree of
“robustness” or immunity to uncertainty or changes in the process. “Sensitiv-
ity” S of a process to a change in one of the parameters of the process in a way
of quantifying the advantage of feedback. Suppose that the transfer function of
the process is H(s;a) where a is some parameter that can change in the
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process. We define the sensitivity of the transfer function H(s; «) to a change
in a« by
H(s; « + Aa) — H(s; @)

1 aH(s) i .
= 474
H(s) oa H(s; a) v_n_._d._ Ao ( )

S(a) =

The sensitivity is thus the fractional change in the transfer function due to
a change in the parameter and corresponds to our intuitive understanding of
sensitivity.

Let us compare the sensitivity of the open-loop system consisting of an
amplifier of gain K and a plant G(s) in tandem (as shown in Fig. 4.32(a)) with
the closed-loop system shown in Fig. 4.32(b). The transfer function of the
open-loop system is

Ho(s) = KG(s) (4.75)

and hence the sensitivity to a change in K is

The closed-loop transfer function, on the other hand, is

KG(s)
=—— 4,76
() =TT ka0 (4.76)
and the corresponding sensitivity is
S = 1+G(s)K 1+ G(s)K]G(s) — G(s)KG(s) _ f 477)
T G(s)K [+ G(s)KT K(l +G(s)K)
Process
—EL -k » Gs)|——F
{a)
Process
u y
K ¥ G(s) >

(b)

Figure 4.32 Open-loop and closed-loop processes for sensitivity comparisons. (a) Open-loop
process Hy(s) = KG(s); (b) Closed-loop process H,(s) = K G{s}/(1 + KG(s)].
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The ratio of the closed-loop sensitivity to the open-loop sensitivity is

S. 1

Se 1+G(s)K

Feedback thus has the effect of reducing the sensitivity to gain variations by
the reciprocal of the return difference 1 + G(s) K. The higher the return difference;
the lower the sensitivity to parameter changes. Thus a high return difference not
only speeds up the dynamic response, as shown in (4.66), but also tends to
immunize the system to changes in parameters of the open-loop system. (In the
above example, the sensitivity to changes in the gain K of the amplifier was
computed. But the principle is equally valid for changes in other parameters of
the plant G(s).) :

From the standpoint of speed of response and immunity to parameter
variations, we should like the return difference of the system to be large at all
frequencies. There are various reasons, however, why this is not a practical goal.
The most important reason is that the transfer function of every practical plant
is “low pass,” tending to zero, (in magnitude) as frequency becomes infinite. If
the amplifier has a fixed gain K, the loop transmission will tend to zero at high
frequencies, and hence the return difference will tend to unity. Instead of an
amplifier with a constant gain of K one might conceive of using a dynamic
*compensator” D(s) with a gain that increases with frequency to counteract the
decrease in the plant transfer function. Such compensators are feasible but not
very desirable in practice because they amplify the inherent high-frequency
noise in the system. Moreover, a physical compensator cannot sustain a transfer
function that increases indefinitely with frequency. As with every physical
device, the transfer function of any compensator must eventually “roll off” with
frequency.

Thus, even with dynamic compensation, the loop trarismission of a system
must ultimately become zero, and the return difference must ultimately
approach unity. The practical design problem is not how to keep the return
difference large at all frequencies, but rather how to make the return difference
tend to unity in a graceful, well-behaved manner.

The problem is phase shift. The decrease in amplitude of the loop gain is
accompanied by a phase shift. It is possible for the loop gain to reach unity in
magnitude, and to have a phase shift of 180° at some frequency. In this case the
return difference is zero and the transfer function of the system becomes
infinite: the system is unstable. In order for the system to be stable, it is not
permissible for the return difference to go to zero at any frequency. Moreover,
because of possible differences between the transfer function used for purposes
of design and the true transfer function, it is imprudent to permit the return
difference to come close to zero. In a practical design it is necessary to provide
reasonable stability margins.

Gain margin and phase margin are the stability margins in common use.
The gain margin is the amount that the laop gain can be changed, at the frequency
at which the phase shift is 180°, without reducing the return difference to zero.

(4.78)
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The phase margin is the amount of phase lag that can be added to the
open-loop transfer function, at the frequency at which its magnitude is unity,
without making the return difference zero. These margins can be illustrated
on a Nyquist plot or a Bode plot for a typical transfer function, as shown in
Fig. 4.33.

The Nyquist diagram corresponding to a typical loop transmission is shown
in Fig. 4.33(a). The loop gain K is taken to be unity, as is customary in gain
and phase margin analyses. The system as shown is stable. At the frequency w,
at which the phase shift is 180°, the magnitude of the loop transfer function
{G(jw,)| is less than unity by the gain margin y. This means that the loop
transmission can be raised by an amount y without causing the system to
become unstable. In most instances the gain margin is expressed as a logarith-
mic ratio in dB = 20log y. The Nyquist diagram of Fig. 4.33 also shows the
phase margin ¢ which is the angle that the phasor G(jw,) makes with the
negative real axis at the frequency w, at which |G(jw)| first reaches unity. If a
phase lag less than the phase margin ¢ were added to each point on the plot of
G(jw), the Nyquist diagram would not encircle the —1+ j0 point and the
closed-loop system would remain stable,

The gain and phase margins are shown in the Bode plot of the loop
transmission in Fig. 4.33(b). Note again that the phase margin is the difference
between 180° and the actual phase shift at the *“gain crossover” frequency w,

20
0
™ Gain margin
m _ 20 log y
Gain | ° _
margin g -20 _ w
b2 3 | _ |
1.0 _.\._ wNN
-40
_ I /
Phase - _ ! /
_.=»_.W.=$ —-60 L] _ L1111l A AR OA |
0.01 _ 0.1 | . 1.0 100
_ Frequency, Hz
—%0 “ _
g | -
& - Phase | 3
° o : E
& —1g0f-margn ¢ >~ :
o - E
o -
2 m / E
Il —-270L T A N R 11 ._____/_IJIJI[IH
@ )

Figure 4.33 Gain and phase iargins defined. (a) Nyquist diagram; (b) Bode plots.
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and that the gain margin is the amount that the log magnitude plot falls below
0 dB at the **phase crossover” frequency w,. :

The gain and phase margins are conveniently expressed in terms of the
magnitude of the return difference

T(jw) =1+ G(jw) (4.79)

which is the phasor from the point —1 + jO to the phasor OC.SV on the Nyquist
plot, as shown in Fig. 4.34(a). It is seen directly from Fig. 4.34(b) that

Y = [TGw)l = [1 + G(jw,)| 0c(w,) = 180° (4.80)
And, by a simple geometric construction {(see Fig. 4.34(c¢))

¢ = 2sin” [TU20)

2 GGl = 1 (481)

Since the gain and phase margins are directly related to the variation with
frequency o of the return diffgrence T(jw), it would not be very surprising to
find that the return difference has an important role to play in the assessment of
the robustness of a control system. The return difference retains its importance
even in multiple-input, multiple-output systems, in which the concepts of gain
and phase margin become problematic.

~1+0 1

[T(es 1))
3

wy

=1 + T(jw) = G{jw)
T(jw) =1 + G{juw)

(a) (b) (c)
Figure 4.34 Use of return difference’ with phase and gain margins. (a) Return difference is phasor

from ~1+ j0 to phase G(jw); (b) Return differences at frequencies of gain and phase margin;
(¢} Constructian for phase-margin formula.
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4.10 MULTIVARIABLE SYSTEMS:
NYQUIST DIAGRAM AND SINGULAR VALUES

Most of this chapter has been concerned with single-input, single-output
“scalar” systems: The plant under examination has one input and one output
and hence, in the frequency domain, it is characterized by a single transfer
function. Most of the systems encountered in practice fall into this class. But
there are many systems in which there are more than one control input and/or
more than one output of concern. An example of a muitiple-input, multiple-
output (or, more simply, multivariable) system is the lateral channel of an
aircraft (in which the inputs are the rudder and aileron deflections and in which
possible outputs would be the roll and yaw angles). Another example is the
distillation column discussed in Example 4A and earlier.

With state-space methods, the focus is on the state of the process more than
on the inputs or the outputs. Hence there is less need for making a distinction
between scalar systems and multivariable systems than there is with frequency-
domain methods. (This is one of the advantages of state-space methaods.)
Nevertheless, a familiarity with some of the concepts of multivariable
frequency-domain analysis cannot but be helpful to the user of state-space
design methods.

The intention of this section is certainly not to provide an introduction to
multivariable frequency-domain design methods. Several textbooks on this
subject, as discussed in Sec. 4.1 and Note 4.1, are available to the interested
reader. This section is intended rather to introduce some of the concepts of
multivariable frequency-domain analysis that are useful to the engineer who is
using state-space methods for design. In particular, it is often necessary to
assess the robustness of a design—to find the gain and phase margins as
discussed in Sec. 4.9. But what are the gain and phase margins in a multivari-
able system? This section is addressed to such questions.

Poles and zeros The difference between a scalar system and a multivariable
systera becomes apparent when we try to define the poles and, more impor-
tantly, the zeros of a multivariable system. In a scalar system, having the
transfer function

oi»+@.hr_+:.+?h| N(s)
s“+as* '+t T D(s)

H(s) = (4.82)

the poles of the system are the frequencies s, at which the denominator is zero
Einh.«+n_u7_+...+n» =0 (4.83)
and the zeros of the system are the frequencies at which the numerator is zero

N(s) = bos* + bs* '+ ... 4+ b, =0
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A multivariable system, however, is represented by a matrix of transfer
functions

I_Auw_.__a_?v
IAMVU L

: (4.84)
Hu(s) --- Hp(s)

where m is the number of inputs to the system and [ is the number of outputs,
Every entry in the matrix represents the transfer function between one of the
inputs and one of the outputs, and is the ratio of polynomials in s in the form
of (4.82). Since each of these transfer functions has its own set of poles and
zeros, how are the poles and zeros of the entire system to be defined? The issue
is readily settled for poles: The poles of the system can be defined as the totality
of the poles of all the transfer functions in the matrix (4.84). This definition of
the system poles is equivalent to expressing the transfer functions as (possibly
different) numerator polynomials in s all over a single common denominator
polynomial. If the matrix H(s) of the system is obtained starting from a
state-space model, as described in Sec. 3.5, this common denominator is the
characteristic polynomial [sI — A|. .

It is reasonable to define the poles of the system as the collection of all the
poles of the transfer functions in H(s) because at any pole at least one transfer
function becomes infinite and hence the matrix H(s) cannot be said to exist. On
the other hand, the entire transfer matrix does not become zero at a zero of one
of the elements in H(s). Thus it would not be appropriate to define the zeros of
an entire system as the collection of the zeros of all the individual transfer
function H;(s). On the other hand, it would not make much sense to define the
zeros of the system as those frequencies at which the matrix H(s) becomes zero,
for then unless all the transfer functions have a common factor (a very unusual
condition), the system H would have no zeros at all!

What is needed here is a definition of the zeros of a multivariable system
which is a natural generalization of the zeros of a scalar system. One way of
interpreting the zeros of a scalar system is as the poles of the inverse system, the
transfer function of which is

D(s)
N(s)

H™'(s) =

If the multivariable system is “square,” i.e., if there are exactly the same
number of outputs as inputs, then H(s) will be a square matrix and, in general,
will an inverse except at isolated (complex) frequencies. It is appropriate to call
these frequencies the zeros of the system. Since the condition for H(s) to have
an inverse is that the determinant of the transfer matrix be nonzero

S| Hu(s) e Hi(s)
_Iﬁuxﬂ SR I X1
Hu{s} -+ Hpal(s)
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we can say that the zeros of a Square system are the zeros of the determinant
[H(s). .
A “nonsquare” system, ie., one in which the number of inputs is not equal
to the number of outputs, is more of a problem. One way of addressing the
problem, when there are more inputs than outputs, is to define several more
independent outputs (assuming that the order of the system is high enough to
permit this). This is done by adding rows to the observation matrix C,
independent of those already present, so that the number of rows in C equals
the number of columns in B, Although these added outputs may not be of
particular interest, this artifice permits use of any of the theory developed for
Square systems. This technique will not avail, however, when there are fewer
inputs than outputs. Adding inputs that are not physically present is not
permissible since the resulting mathematical model would no longer represent
the physical process. A more general definition of the zeros of g nonsquare
system avoids the need for the artifice of adding inputs or outputs. We define-
the zeros as those (complex) frequencies at which the rank of the transfer.
function matrix H(s) is reduced, Normally the transfer-function matrix will be
of *“full rank,” j.e., rank{H(s)] = min[l, m] except at the zeros of the system at
which H(s) will drop to less than full rank. (See Note 4.4.)

The return difference and the multivariable Nyquist diagram In Sec. 4.9 we found

that the phase and gain margins of a scalar system, traditional measures of -

system robustness, can be determined by an examination of the behavior of the
return difference as a function of frequency. It turns out that the manner in
which the return difference varies with frequency also provides a means of
measuring robustness in a multivariable system. To develop the concept of
robustness for multivariable systems we need to clarify the notion of return
difference and find a useful and convenient way of characterizing its behavior
with frequency. ,

In Sec. 4.3 (block-diagram algebra) we saw that it is generally possible to
express the transfer function from the input of a feedback system to its output
in the form of the product of a *“forward transmission matrix " and the inverse
of another matrix of the form T(s) = I + G(s), where G(s) is the *loop
transmission.” The matrix T(s) was called the “return difference.” This is the
matrix that we investigate to assess the robustness of a multivariable system.

An important feature of the return difference T(s) is that it is the sum of an
identity matrix (which of course is square) and the loop transmission G(s). In
order for the sum of I and G(s) to be defined, G(s) must also be a square
matrix of the same dimension as I Hence the return difference T(s) is a square

matrix and there is no problem defining its zeros: they are the zeros of the
determinant

[TCs)l = |1+ G(s)f

Since the inverse of the return-difference matrix appears as a factor in the
transfer-function matrix of the closed-loop system, the poles of the latter will
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include the zeros of the return difference. Naturally we expect the return
difference to be zero at some (complex) values of 5. If the system is stable, these
zeros will occur only in the left half-plane: if the system is unstable, however,
one or more zeros of the return difference will occur in the right half-plane, The
question that an analysis of robustness seeks to answer is how much a
parameter of a stable system can be permitted to vary before the system becomes
unstable. In a scalar system, we can estimate the robustness by using the
classical stability margins which can be determined by examining the behavior
of T(s}. But by Nyquist’s method, we only need to investigate T(s) for 5= jw,
that is, for s on the imaginary axis. In particular, the minimum value of the
magnitude of the return difference indicates how close the Nyquist diagram
comes to the “critical” —1 + j0 point (see Fig. 4.31) and is a pretty good
measure of robustness: The larger the minimum value of the magnitude of the
return difference, the more robust (i.e., tolerant of loop gain variations) the
system,

The determinant of the return-difference matrix in a multivariable system
plays the role of the return difference itself of a scalar system. It would be quite
natural to assume that the robustness of a multivariable system can be deter-
mined by studying the Nyquist diagram for the determinant of the return
difference of the system. A polar plot of the determinant of the return difference
[T(jw)| as w is varied from —oo to o may be termed the multivariable Nyquist
diagram for the closed-loop system. To make the plot resemble a scalar Nyquist
diagram we can place the origin at the critical point —1 + jO. This is the same as
writing

{TUw)| = 1 + G(juw) (4.85)

and obtaining the Nyquist plot for G(jw). In the multivariable case, however,
G{jw) cannot be interpreted at the “open-loop” transmission.

Singular value analysis Although the multivariable Nyquist plot is fairly easy to
obtain, especially with the aid of a computer, it often does not tell enough about
the robustness of the system under investigation, because the determinant of a
matrix is not always a good indicator of how near that matrix comes to being
singular. And that is what we want to determine for the return difference matrix
T(s).

To see why the determinant of a matrix may be a poor indicator of how
near the matrix comes to being singular, consider the matrix

I 0
= 4.86)
M /e 1 (
This matrix has a determinant of unity independent of &, yet is only an & away
from being singular: Replace-the zero in the upper right-hand corner of Mbye
and M is singular. The eigenvalues of a matrix are scarcely a better measure of
the incipient singularity. In the case of M of (4.86), for example, the eigen-
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values of M are both unity, and do not provide an inkling into the near-
singularity of M.

A better measure of the near-singularity of a matrix is the set of singular
values of the matrix, defined as the square-roots of the eigenvalues of MM
where M " is the transpose of the complex conjugate of M. (These eigenvalues
are always positive and real. See Note 4.5.) When M is a real matrix M¥ = M,
But since the matrices we will be considering are in general complex functions
of frequency (when s = jw), it is necessary to make use of the more general
form. Thus, in a multivariable system, instead of investigating the behavior of
the determinant of T(jw) or even of the eigenvalues of T(jw), it is more
appropriate to investigate the singular values of T(jw), that is, the square roots
of the eigenvalues of

S(w) = T"(jo)T(jw) = T(=jw)T(jw) (4.87)
(Note that T (jw) = T'(—jw) because T(s) is a real function of s, that is, every
element of T(s) is real when s is real.)

As an illustration of the advantage of singular values over eigenvalues as a
measure of incipient singularity, we find the singular values of the matrix M in
(4.86). Since M is real, we need the eigenvalues of

1 t/eff 1 0 1+1/e* 1/e

S=MM-= =
M 0 1 1/e 1 /e 1

The characteristic equation of § is

A-1-1/e" -1/e 2 A . _v
Al - 8| = =A2— —}t+1
| | —1/e A—1 >N+mn

and the eigenvalues are

il

1 1
A=l+o5+—V1+4g°
2e” 2

1 1
ha=lto5-o51 +4¢’

The larger eigenvalue A, tends to infinity as £ - 0. But the smaller eigenvalue A,
tends to zero, and as a consequence, one of the singular values o, = A'/2 5 0 as
£ - 0, thus providing an indication that M becomes singular as &£ » 0, Note
also that the two singular values o, = A}/2 and o, separate more and more as
£ > 0. This is an indication of the “ill-conditioning” of M: Not only does it
become singular as £ > 0, but it also grows (j.e., one of its elements grows) to
infinity.

The singular values of the return difference matrix T(jw) = I + G(jw) can
be used to estimate the gain and phase margins of a multivariable system. A
number of theorems have been developed since the late 1970s for estimating
these margins (see Note 4.6). A typical theorem is the following [ 16]:
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Let o[T(jw)] denote the smallest of the singular values of the returmn
difference at the frequency w. Suppose that there is a constant a = | such that
o[T(jw)] = « for al! frequencies. Then there is a guaranteed gain margin

1

= 43
GM 2 {4.88)

and a guaranteed phase margin

PM =22 a:-_@v (4.89)

A number of theorems related to the one cited above have been developed
during the early 1980s. This subject is likely to continue to receive a great deal
of attention by researchers of the decade.

One of the major problems of singular value analysis is that the stability
margins that it guarantees are extremely conservative, because they allow for the
simultaneous magnitude and phase variations of any of the gains at which the
loop is closed. In other words,.if the off-neminal return difference is

T(s) = I + DG(s)

the singular value analysis tends to seek out the least favorable variation of the
matrix D that represents the departure of the plant from its nominal, or design,
value. The matrix D in practice, however, is anything but arbitrary. The singular
value analysis may predict very small gain or phase margins on the basis of
unlikely, or even impossible, plant variations.

A more reasonable assessment of robustness would take into account only
those variations in system parameters that can actually occur in reality. If the
total range of variation of the system can be represented by a single parameter,
say u, which ranges between 0 and |, that is, the plant transfer matrix is G(s, )
with G(s, 0} = G(s) being the “nominal” system and G(s, 1) being the transfer
matrix for the largest possible variation of the physical parameters, then there is
a general theorem [16] that asserts that the system is stable for all values of
0= u =1if, and only if, the multivariable Nyquist plot for 1 + G(s, 0) deforms
“smoothly” into the Nyquist plot for 1+ G(s, 1) and at no time covers the
critical point —1 + j0. :

Example 4H Two-loop control of distillation column The distillation colimn introduced in
Example 2G and discussed later in Examples 4A and 4C has two control inputs i, (the steam
flow rate) and As (the vapor side-stream flow rate) and may be regarded as having two outputs
Az, and Az,, the positions of the “interphase fronts.” This process thus seems a :m::.&
candidate for a two-loop control system, as shown in Fig. 4.35. The side-stream flow rate As is
controlled by the displacement Az, of the front between the water and the propanol, and the
steam flow rate Aw, is controlled by the disptacement Az, of the front between the water and
the glycol. A more general control in which each control input is a linear combination of the
two control outputs would probably be employed in practice, but the resulting complexity of
the overall system in this case ‘would obscure the analysis of this example, the objective ws
which is to illustrate the multivariable Nyquist diagram and singular-value estimation of gain
and phase margins.




41035

USC Neuroscience Program

59 FAX 213 7405687

TUE 13

01/26/99

180

CONTi {STEM DESIGN
K As DN.’" X3
1 Distillation "
column
of
Au; Fig. 4A.1 DS!H x4
K, »>

Figure 4.35 Two-loop control of distillation column.

Using the numerical data of Example 2G in the transfer matrix determined in Example
4A, we find that the transfer matrix for the plant is

a4 w2
s s(s + 6.02)(s + 30.3)
= 4H.1
A =1 ) 652 -206.6 (4H.1)

s s(s + 6.02)(s + 30.3)

auﬁa_ _;
“lo kK,

implied by the structure of Fig. 4.35, and we find the return-difference matrix

with the diagonal matrix

| 204K, 278.2K,
5 s(s +6.02)(s + 30.3)
= I+ KH(s) = 4H.2
Tts) Hls) 0052K; | 206.6K, (H2)
s s(s +6.02)(s + 30.3)

The closed-loop poles are determined by setting the determinant of the return difference to
zero

w.otpx_ B 206.6K, V , (2782)(0.05)K K, I

=Tk = A_ + s(s +6.02)(s +303)/  5%(s + 6.02)(s + 30.3)

5

From (4H.3) we obtain the characteristic equation of the system
A(s) = s*(s + 6.02)(s + 30.3) + 3.04K,5(s + 6.02)(s + 30.3) - 206.6K,s — 613.9K, K,
54+ (36.62 + 3.04K,}s* + (182.4 + 1 104K, )s? + (554.5K, - 206.2K,)s — 613.9K K,
0 {4H.4)

The ranges of K, and X, for which the closed-loop system is stable can be found using
the Routh array or the Hurwitz matrix described in Sec. 4.5. In particular, the Hurwitz matrix
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for this example is

3632+ 3.04K, 554.5K, — 206.6K, 0. 0.

1. 1824+ 1104K,  -613.6K,K, 0.

=, 3632+ 3.04K, 554.5K, — 206.6K, 0.
0. I. 1824+ 104K,  ~613.6K K,

By the Hurwitz matrix criterion, stability of the closed loop system is assured if

D, =3632+3.04K,> 0
3632+ 3.04K, S54.5K, —206.6K,
D, = >0
1. 1824 + 1104K, -
5
Dy = (554.5K, - 206.6K,) D; + 613.6K, K,(36.32 + 3.04K,)* > 0 )
D, = -613.6K,K,D,> 0

Numerical analysis (Prob. 4.6) reveals that the four inequalities of (4H.5) are simul-
taneously satisfied in a region that is nearly rectangular and given by

0=K, <1194
C0=~K, = ~321

{See Fig. 4.36.)
A “comfortable™ operating point would be at

K,=5 K,=-10

which provides a gain margin of over 2 for K, and over 3 for K,. The return-ditference matrix
at this operating point is given by

|_ . 152 1392.5
s s{s +6.02)(s +130.3)
T(s) =
_052 1+ 2066.
. s s(s+6.02)(s + 30.3)
s+ 15.2 —13925
_ s s(s +6.02)(s +30.3)
T -052 £ +36.3257 + 182.4s + 2066,
L s s(s+6.02)(s + 30.3)

This is the matrix we will analyze using the methads of this section.

First we obtain the “‘multivariable Nyquist m._E " i.¢., the magnitude and phase of the
determinant of the return difference:

(s +15.2)(s* + 36.325% + 182.45 + 2066.) — (0.52)(1392.5)

ITCs) = $5(s + 6.02)(s + 30.3)
_ 5%+ 5.525% + 734.55% + 48395 + 30 686,
s* 436325 + 182.452
= 1+ G(s)
where
a(s) = 15.25% + 552.065% + 4839.5 + 30 686. (4H.6)

5*+36.325° + 182.452
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Figure 4.36 Stability region for two-loop control of distillation column.

The {(multivariable) Nyquist plot for G(s) as given by (4H.6) is shown in Fig. 4.37. The
plot starts with a phase shift of slightly more than 180° and crosses the 180° line (at a
frequency of about 6 cycles per hour) at o = —4.7. A scalar system with this Nyquist plot
would be only conditionally stable (with a gain reduction margin of 4.7). This is somewhat
misleading, because we know that the plant is open-loop stable and that both gains can be

jw
»
—2
0.6 Critical point —1
1 | | )
-9 -8 -7 -6 ! o
-1
-2
(a)
Frequency, h'i Critical point
5 -4 -3 -2
1 1 1 |
65°
5.
1
2. 11
-2
(h) -1-3

Figure 4.37 Multivariable Nyquist plot for two-loop control of distillation column. (a) System
appears to be conditionally stable; (b) Apparent phase margin of 65°.
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Figure 4.38 Singular values for two-loop control of distillation column.

reduced to zero (individually and simultaneously) without compromising stability. The
Nyquist plot also seems to imply an infinite margin for gain increase and this again is
misleading because we have already determined that there is a finite upper limit on each of the
gains. Finally, we note that the Nyquist diagram suggests a phase margin of about 65° But
how is this phase margin to be interpreted?

If we examine how G(s) is computed from T(s) we can readily explain this apparent
paradox. The characteristic equation (4H.3) contains K|, K,, and the product K,K,. We are
trying to assess the effect of changes in K, and K, as if they resulted from the variation of a
single parameter. It ought not to be too surprising to find that an apparent pain reduction
margin in the Nyquist diagram is the effect of positive gain margins on K, and K,.

The numerically computed plots (using the customary dB vs. log frequency scale) of the
two singular values of the return difference are shown in Fig. 4.38. The smaller of the two
singular values reaches a minimum of —8.16 dB at the frequency of 7.9 rad/h (1.26 cycles per
hour). The corresponding value of & = 0.391, and hence by (4.88) and (4.89) the guaranteed

gain and phase margins, are H

o301 718
GM = _. (4H.7)
e = 164
b —0.391
and
0.391
2sin™! 5 = 22.5°
‘PM = (4H.8)
. ,0391
=2sin” —/— = -22,5°
2
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Considering that the gain and phase margin estimates are known to be very conservative,
the predictions of (4H.7) and (4H.8) are not tao bad. In particular, the upper margin of 1.64
compares quile favorably with the true margin of 11.94/5 = 2.39.

PROBLEMS

Problem 4.1 Closed-loop transfer function for state feedback
Consider the control process of Fig. P4.1, corresponding to the process
%= Ax+ Bu
y=0Cx
**State-variable™ feedback is used
u=u,— Gx
(a) Aided by block-diagram analysis, show that the transfer function from U to y is given by
H(s) = C®(s)B[I + G®(s)B]"! (P4.1)
where .
¥(s) = H(s)u(s)
and ®{s) = (sl — A)~! is the resolvent.

(b) Show that {P4.1) implies that the transmission zeros of the process, i.e., the zeros of
{C®(s) B| are nol altered by state-variable feedback.

Process Observation
X=Ar+ B ’ c ||v<
= Al {0} »> -
Reference State Output
Feedback

Figure P4.1 Control system with state-variable feedback.

Problem 4.2 Three-capacitance thermal sy Ieedback conirol

It is desired to control the temperature at point 1 on the insulated rod of Prob, 2.3 el seq. For
this purpose a temperature sensor {e.g., thermocouple} is attached to the rod, and the input power
is varied in proportion to the difference d = T, — T,. In the electrical analog the feedback law is

e=u=gd d=ezg—1y

{a} Find the closed loop transfer functions to the output from the reference input and from
the disturbance

va(s) Hy(s) I<L.3
L(s) =

Hy(s) =
)= ® vols)

respectively.
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(b) Find the range of the feedback gain g for which the closed-loop system is stable. (Why is
it not stable for all g?)

(¢) Draw the root locus of the system.

(d) Draw the Nyquist and Bode diagrams.

(e} As a function of g, determine the steady state error d,, = eg(0) when vy # ep.

Use the following numerical data

R=1 C=2

Problem 4.3 Three-capacitance thermal system: PI control

The presence of a steady state error in the system of Prob. 4.2 makes the control law vnsuited
for precise temperature control, To improve the steady state performance, proportional + integral
(PI) control is to be used. The transfer function of the “ compensator™ is 10 be

u(s

us)

d(s) 5
instead of g as used in Prob 4.2.

(a) Find the range of gains g, and g, for which the closed-loop system is stable.

(b) For g,/ g, = 1, draw the root locus of the system with g, as the variable gain.

(¢} Draw the Nyquist and Bode diagrams corresponding to part {b).

Problem 4.4 Aircraft lateral dynamics; modes and transfer lunctions

The aerodynamics data for a fighter aircraft are as follows

Y, Y, Y, Y, Y,
“B_ 0746 —E—0006 =000t L-00369 ~2=00012 -R-q009
A4 v 1’4 v v 14
Lg=-129 L,=-0746 L, =0387 L, =605 Lg =0.952
Ng =431 N, = 0.024 N,=-0.174 N,=-0416 Np=-176

(a) Using the state vector x =[8, p, r, ¢] as given in (2.46), write the A and B matrices.

(b) The eigenvalues for the lateral motion of an aircraft consist, typically, of two complex
poles with relatively low damping, and a pair of real poles. The complex pair defines a mode called
dutch roll. One rveal pole, relatively far from the origin, defines a mode called rolf subsidence, and &
real pole near the origin defines the spiral mode. (The latter is sometimes unstable—spiral divergence.)
Using the data given above find the four modes for this aircraft,

(c) A stability augmentation system (SAS) is to be designed for this aircraft using two-rate
gyros, each of which measures one of the bodies rated p and r. Find the transfer functions

o) r(s) p(s) 1(s}
Bals)  Ba(5)  Bpls)  Bgls)
Is it apparent from these transfer functions why the ailerons are used for roll (p) control and the

rudder is used for yaw (r) control?
{d) Find the transmission zeros of the process.

Problem 4.5 Aircraft longitudinal dynamics, simplified
The aerodynamic coefficients for an aircraft are approximated by
Z V4
o E_ _6.1

v v
M,=-05 M,=-5 Mg=-9
Xa Xe

v v

oo
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All other coefficients are negligible.

(a) m.r..n_ the open-loop poles (shert-period and phugoid modes) of the aircraft.
(b} Find the transfer functions of the aircraft from 8x to 6 and u,

Problem 4.6 Distillation column

By use of the Hurwitz matrix, verify th

at the range of gains for stability of the closed-loop
system of Example 4G is as shown in Fig. 4.3

Problem 4.7 Double-effect evaporator

Consider the double-effect evaporator introduced in Example 2H, with the dynamics matrices
as defined by (2H.5)-(2H.7).

(a) Find the open-loop poles (eigenvalues) of the system.
(b) The observed quantities (“outputs™) are y, = x, (first-effect holdup) and ¥2 = X, (second-

effect holdup). What is the observation matrix? Find the transfer functions from the conirols to the
oulputs,

Problem 4.8 Double-effect evaporator: feedback control

A twa-loop control system is proposed for the double-effect evaporator of Prob. 4.7 in which
the first-effect holdup X, is controlled by the steam-flow rate w, and the second-effect holdup x, is
controlled by the first-effect bottoms flow rate ;. The resulting system has the structure shown in
Fig. P4.8.

(a) Find the range of gains 4, and g, for which the closed-loop system is stable.

(b) Let the rewurn diffierence for the process be given by

T(s)=1I+ GH(s)

where G =g, g,] and H(s) is the 2 x 2 transfer-function matrix. Plot the singular values of

the system as a function of frequency, with the loops opened at the input. Use a nominal value
G = G =[-40, 40].

(c) Repeat part (b} with a nominal gain matrix G = [-20, 10].

Xor 9 #2 ] First- Second- | X4
effect effect
bottoms holdup
flow
rate

Hs)
Steam First
ik g, | Row effect | *t
/ | rate E@E

Evaporator dynamics

Figure P4.8 Control system for double-effect evaporator.

FREQUENCY-DOMAIN ANALYSIS 187

Problem 4.9 Gun turret: range of gain for stability

Using the Routh table or the Hurwitz matrix criterion, find the range of gains for which the
turret control system of Example 4D is asymptotically stable.

Problem 4.10 Missile autopilot: Bode and Nyquist diagrams

Draw the Bode and Nyquist diagrams for the missile autopilot of Example 4F.

Problem 4.11 Missile autopilot: Acceleration and angular rate feedback

In addition to the feedback of the normal acceleration error e = ane — dyn, 2 a2 missile
autopilot will frequently also make use of the pitch rate. This will thus result in a control law

u=Kane - an) - Kyq {P4.11a)

{(a) Using this control law, find the range of K, and K, for which the closed-loop system is
stable.

(b) In order to implement the control law of (P4.11a) an additional sensor (a rate gyro to

measure q) is needed. What are the benefits that such a control law might confer on the system that
would justify the additional cost of the sensor?

NOTES

Note 4.1 Frequency-domain analysis

The frequency-domain approach to control system analysis and design which was developed
during the 1940s and 1950s is often called the “classical™ approach to distinguish it from the
‘“‘modern” state-space approach which had its beginnings in the late 1950s and early 1960s.

Not all investigators agreed on the advantages of the state-space approach over the frequency-
domain approach, and a significant minority remain unconvinced to the present day. The complaint
of the frequency-domain advocates is that the reason for the use of feedback is the uncertainties in
the dynamic process, and that when these uncertainties are present, the qualitative methods of
frequency-domain analysis are more appropriate. Qualitative system properties such as bandwidth,
stability margins, etc., were regarded as difficult to study by state-space methods. To answer the
need for computational design tools for multivariable systems that would rival the state-space tools
in power, the classicists developed such techniques as multivariable root loci, multivariable Nyquist
plots, and various subsidiary techniques. Much of the theoretical results and most of the design
software is the product of the efforts of investigators of the United Kingdom, led by H. H. Rosen-
brock[17] of the University of Manchester and A. J. G. MacFarlane[ 18] of the University of Cambridge.
1. Horowitz of the Weitzmann Institute (Israel) is another leading exponent of the classical approach.
Since state-space concepts have been included in many of the newer frequency-domain methods, it
might be appropriate to call this work * neoclassical.” Néoclassical frequency-domain activity of the
western hemisphere is represented by the theoretical work of C. A. Desoer of the University of
California (Berkeley) and G. Zames of McGill University.

Note 4.2 Aireraft dynamic modes

The terminology of aircraft dynamics stems from the 1930s and 1940s. The longitudinal modes
are called “*short-period™ and * phugoid"'; the lateral modes are “dutch-roli,” “spiral,” and *'roll
subsidence.” The background of this terminology is given by Etkin[19]

Note 4.3 Bandwidth of multivariable systems

R. W. Bass[15] has defined the bandwidth of a system in state-space form as
w=(Al/1Aa™ D3
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and has proved that [®(jw)® '(0)] = 1/V2 for w > W, where ®(jw) = (jol ~A)7}, ie., the
resolvent of the system at 5 = jw. These inequalities are generalizations of the concept of bandwidth
for scalar systems.

A shartcoming of this defi
nor the observation matrix C enter into the defin
poles, and not on the zeros, of the system.

n of bandwidth is that neither the control distribution matrix B
n. Thus this definition depends only on the

Note 4.4 Transmission zeros

1t is said with considerable justification that state-space methods are concerned primarily with
the poles of a system rather than with its zeros. This is surely one of the reasons that transmission
zeros play a much larger role within the classical and neoclassical (frequency-domain) methodology
than they do in the state-space methodology. [n the latter the compensator is designed by the separation
principte: first a *full-state” feedback law is designed to estimate those states that are not directly
measured; then an observer is designed to estimate the missing states. In the first step only the A
and B matrices are used; in the second step only the A and C matrices are used. The only place A,
B, and C are brought together is when the full-state feedback law is combined with the observer to
yield the required compensator. Since the transmission zeros depend on A, B, and C together, through
H{s) = C(sf — A)"'B, the state-space approach obscures the transmission zeros. Since the behavior
of a system depends not only on its poles, but also on its zeros, the absence of a clear connection
in the state-space methodology between the compensator design and the transmission zeros is a
shortcoming of this methodology and suggests a possible direction for future research.

As one might expect, transmission zeros receive the greatest attention in books empbhasizing the
frequency-domain methodology. In particular, see [17]) and [18].

Note 4.5 Singular-value analysis

The singular values of a matrix are of particular importance in determining whether a matrix
is relatively easy to invert (* well conditioned™) or difficult to invert (**ill conditioned*’). They are
consequently of special interest in the branch of numerical analysis that is concerned with
algorithms for the manipulation of large matrices. Singular-value analysis is prominent in books on
numerical methods, such as Householder,[20]

Note 4,6 Robustness of multivariable control systems

The study of robustness of multivariable control systems by means of singular-value analysis is
represented by the work of a number of investigators centered at the Massachusetts Institute of
Technology beginning in the late 1970s with the doctoral research of M. G. Safonov.{21] A number
of papers that make use of singular-value analysis as an analytical tool for multivariable control
systems are included in the Special Issue on Linear Multivariable Coantrol Systems of the IEEE
Transactions on Automatic Control[22]

Note 4.7 Nonminimum phase poles and zeros

It is readily seen that a pole or a zero at s = —oy + jwg or at s = +o7 + jw, will have the same
effect on the Bode amplitude characteristic of a system, but will have different effects on the phase
characteristic. The phase associated with the pole or zero in the left haif-plane is ¢, =
tan"'(oy/w + wy) while the phase associated with the pole or zero in the left half-plane is
¢, = tan"(—0p/w + wp); @, is always less than 90 degrees while ¢, is greater than 90 degrees. Thus
of the twa, the left half-plane pole or zero is the one of 3.:.5:5._15%_ a term first used by Bode.[2]
A =o=3_=.r_=a.. phase pole is always indicative of an unstable system. Nonminimum phase zeros,
on the other hand, can occur in a stable system, but if they do occur they are often a source of
difficulty to the control system designer.
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