CS545—Contents XXI

» Case Study: Gravity Compensation with the Sarcos
Dexterous Master Arm

+ A Gravity Compensation Control Circuit
+ Primary goals and subgoals
+ Math and Algorithms
+ Automatic C-code generation with mathematica

+ How to embed the controller in the VxWorks environment
+ Spinal-Cord: the low level I/O and negative feedback processor
+ Interprocessor communication (semaphore, shared semaphores, shared objects)
+ Motor-Cortex: the task level control processor
+ Creating a task program

» Reading Assignment for Next Class

+ See http://www-slab.usc.edu/courses/CS545



Theory: Gravity Compensation

At every timestep:
—Read current positions from sensors
— Calculate inverse static feedforward torque
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How To Program The “Honey Sphere™?

e In Joint Coordinates:

—Within a certain joint angle range of each DOF, add a negative
component to the feedforward command proportional to the current
DOF velocity

* In Cartesian Coordinates:
— Check whether the endeffector is in the sphere

—If yes, calculate viscous friction force according to endeffector
velocity

— Convert viscous force into joint torques with Jacobian Transpose

— A “cheap version”: turn on viscous force in joint space if the
endeffector is in the Cartesian sphere



Reminder: Setup of the Robotic System
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What happens on Spinal-Cord?

At high sampling rate (e.g., 500-1000Hz)
—Read sensory data (positions, velocities, torques from load cells)
—Process sensory data (filtering and numerical differentiation)

—Receive desired trajectory and feedforward commands through inter-
processor communication

— Safety Check: Are the desired values in a permissible range
— Generate total commands: u=PD+FF

— Safety Check: Are commands in a permissible range
—Send commands to the robot

—Provide the state of the robot in shared memory



Interprocessor Communication in
VxWorks: Shared Memory (VXMP)

e [nitializing Shared Memory

+ The following C-code creates a shared memory object “sm_joint_state” on
the current processor

if (smNameFnd ('smJointState ", (void &sm _joint_state, &mype, NO_ WAIT)==ERROR){

sm joint_state=(SL Jstate®) smMemCalloc (N DOFS+1, sizeof (SL_Jstate )
if(sm_joint_state =—=NULL)

retum;;
ermor= smNameAdd ('smJointState , (Void*) smObjLocalT oGlobal (sm_joint_state),

Sizeof (SL_ Jstate(N_DOFS+1)),

ifemror—ERROR)

retum;;

printf (‘Global shared memory for Joint States i s set at Ox%/ox. '

(char*)smObjLocalToG lobal  ((Vvoid¥)am_joint_state) )



Interprocessor Communication in
VxWorks: Shared Memory (cont’d)

e Using the Shared Memory

+ The following C-code finds a shared memory object and stores its pointer
In “sm_joint_state” on the current processor

if (smNameFnd ('smJointState ", (void &sm _joint_state, &mype, NO_ WAIT)==ERROR){
sm joint_state=(SL Jstate®) smMemCalloc (N DOFS+1, sizeof (SL_Jstate b))
reumE RROR;

}

printf(‘Global sh ared memory for Joint States was found at 0x%6x\n",am_joint_state);



Semaphores

 Binary Flags to prioritize and synchronize tasks on a
processor or between processors

+ Semaphores have two possible states:
o Full (1)
+« Empty (0)
 Primarily two functions are used to handle semaphores

+ SemGive
+ SemTake



The Behavior of Semaphores
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Shared Memory Semaphores

e Initializing a Shared Memory Semaphore

if(smNameFnd ('smJointStateSem*, (void &sm _jont state sem,& miype NO_WAIT—ERROR){

sm_joint_stat e sem = semBSmCreate (SEM Q HFO, SEM FULL);

f(sm_joint state sem=NULL)

retum;
ermor = smNameAdd ('smJointStateS em”, (void®) sm_joint_sta te sem, T SM SEM B),
ifemor—ERROR)

retum;;
printf (‘Global sha red semaphore for Joint State is setat 0x% X\,

(char®) smObjLocalToGl  oba (vod¥)an_jont state sem)),

}
 Finding the Shared Memory Semaphore

if(smNameFnd ('smJointStateSem”, (void &sm _jont state sem,& miype NO_WAIT—ERROR){
retum E RROR;

printf('Global s hared semaphore for Joint State is setat 0x%ox\n",am_joint_state sem))

10



11

How to use Shared-Memory

— Create shared memory object
— Create shared memory semaphore
—For using the share memory:

+ Task semaphore

+ Read form or write to memory

+ Give semaphore



What Is happening on Motor-Cortex?

* Motor-Cortex just executes Tasks
— At high sampling rate (e.g., 500Hz)
+ Read sensory date from shared memory
+ Generate desired trajectory and feedforward commands
+ Write desired trajectory and feedforward commands to shared memory
» Tasks need to consist of (at least) 3 function
— Initialization function of the task (not time critical)
—Run function of the task (real-time)
—Function to change the parameters of the task (not time critical)
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Adding a New Task

* Write C-functions that contain the 3 required routines
+ (templates: my_task.c will be provided)

e Compile the C-code
e Add to VxWorks:
—E.qg., vxworks> |d < my_task.o

e Link the code into exisiting C-code
—E.qg., vxworks> addTask(“cs545”, myinit, myrun,mychange)
+ (this assumes you wrote the functions myinit, myrun,mychange)
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What Iis happening in the INIT function?

—Bring the robot to an initial (safe) posture
—Initialize variables
—Trigger task execution



What happens in the RUN function?
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 Assign appropriate values to feedforward commands and
desired trajectory variables (“joint_state”, “joint_des_state™)

* Definition of these structures (see SL.h)

SL_Jstate joint_state[N_ DOF+1]

SL_Dstate joint_des_state[N_DOF+1]

e Possible DOFs:

+ SFE (shoulder flex-extend)

+ SAA (shoulder aduction-abduction)
+ HR (humeral rotation)

+ EB (elbow)

+ WFE (wrist flex-extend)

+ WAA (wrist adduction-abduction)

+ Finger DOFS are not used

typedef struct { /* joint space state for each DOF */
real th; /*theta*/
real thd; /* theta-dot */
real thdd; /* theta-dot-dot */
real u; /*torque command */
real load; /* sensed torque */
} SL_Jstate;

typedef struct { /* desired values for controller */
real th; /* desired theta */
real thd; /* desired theta-dot */
real uff, /* feedforward command */

} SL_DJstate;



What happens in the CHANGE
function?

e Interactively change variable assignments, e.g., change
some gains for the “honey sphere”



