CS545—Contents XXI

» Case Study: Gravity Compensation with the Sarcos
Dexterous Master Arm

+ A Gravity Compensation Control Circuit
+ Primary goals and subgoals
+ Math and Algorithms
+ Automatic C-code generation with mathematica

+ How to embed the controller in the VxWorks environment
+ Spinal-Cord: the low level I/O and negative feedback processor
+ Interprocessor communication (semaphore, shared semaphores, shared objects)
+ Motor-Cortex: the task level control processor
+ Creating a task program

» Reading Assignment for Next Class

+ See http://www-slab.usc.edu/courses/CS545

Theory: Gravity Compensation

At every timestep:
—Read current positions from sensors
— Calculate inverse static feedforward torque

desired state

desired —P>

Sum?2

Inl Outl |

Outl In1

‘__

Inverse Static
Computation

PD Controller

Sum3

How To Program The “Honey Sphere™?

e In Joint Coordinates:

—Within a certain joint angle range of each DOF, add a negative
component to the feedforward command proportional to the current
DOF velocity

* In Cartesian Coordinates:
— Check whether the endeffector is in the sphere

—If yes, calculate viscous friction force according to endeffector
velocity

— Convert viscous force into joint torques with Jacobian Transpose

— A “cheap version”: turn on viscous force in joint space if the
endeffector is in the Cartesian sphere

Reminder: Setup of the Robotic System

“Analog
Wires”

Robot

AJC-Bus

Ethernet

(rubens.usc.edu

Host Computer

-

Sun Solaris 2.6

MVME 2700 Targets

VME-Bus
Three PPC

A4

(vxWorks)

VME
Backplane

motor-cortex.usc.edu

H_

spinal-cord.usc.edu

.

premotor-cortex.usc.ef

lu

VME
Backplane

Parallel
/O

What happens on Spinal-Cord?

At high sampling rate (e.g., 500-1000Hz)
—Read sensory data (positions, velocities, torques from load cells)
—Process sensory data (filtering and numerical differentiation)

—Receive desired trajectory and feedforward commands through inter-
processor communication

— Safety Check: Are the desired values in a permissible range
— Generate total commands: u=PD+FF

— Safety Check: Are commands in a permissible range
—Send commands to the robot

—Provide the state of the robot in shared memory

Interprocessor Communication in
VxWorks: Shared Memory (VXMP)

e [nitializing Shared Memory

+ The following C-code creates a shared memory object “sm_joint_state” on
the current processor

if (smNameFnd ('smJointState ", (void &sm _joint_state, &mype, NO_ WAIT)==ERROR){

sm joint_state=(SL Jstate®) smMemCalloc (N DOFS+1, sizeof (SL_Jstate)
if(sm_joint_state =—=NULL)

retum;;
ermor= smNameAdd ('smJointState , (Void*) smObjLocalT oGlobal (sm_joint_state),

Sizeof (SL_ Jstate(N_DOFS+1)),

ifemror—ERROR)

retum;;

printf (‘Global shared memory for Joint States i s set at Ox%/ox. '

(char*)smObjLocalToG lobal ((Vvoid¥)am_joint_state))

Interprocessor Communication in
VxWorks: Shared Memory (cont’d)

e Using the Shared Memory

+ The following C-code finds a shared memory object and stores its pointer
In “sm_joint_state” on the current processor

if (smNameFnd ('smJointState ", (void &sm _joint_state, &mype, NO_ WAIT)==ERROR){
sm joint_state=(SL Jstate®) smMemCalloc (N DOFS+1, sizeof (SL_Jstate b))
reumE RROR;

}

printf(‘Global sh ared memory for Joint States was found at 0x%6x\n",am_joint_state);

Semaphores

 Binary Flags to prioritize and synchronize tasks on a
processor or between processors

+ Semaphores have two possible states:
o Full (1)
+« Empty (0)
 Primarily two functions are used to handle semaphores

+ SemGive
+ SemTake

The Behavior of Semaphores

Basic 05

Figue 25 Taking a Semaphors
e a-' '\-\. NG task is |
e "o ™ nded for
< Bemaphore ™, __ e timeout= S p&hmenut
. available? S NO_WAIT - |
" - ", _ vialua
YEES l VBE
task continues; | | task continues; 5
SEMAphore samaghore |
laken mal taken
S S—— — L S ey _—
Figurs 2.10 Giving a Semaphare
P i
iy no | 8 -
5k continues,
';"‘--\. h:ur'gﬂa—?blhgga __'__—H' ;ﬂrﬂisdﬂ __-'_'.' EEﬁ'lal:lhl:lrE.' |
F' -~ | made available
task continues; |d5h. at fromt of
samaphors | queue made ready;
Famaing sEmaphone rﬂrnaln! ’
unchanged ' | unavailable

Shared Memory Semaphores

e Initializing a Shared Memory Semaphore

if(smNameFnd ('smJointStateSem*, (void &sm _jont state sem,& miype NO_WAIT—ERROR){

sm_joint_stat e sem = semBSmCreate (SEM Q HFO, SEM FULL);

f(sm_joint state sem=NULL)

retum;
ermor = smNameAdd ('smJointStateS em”, (void®) sm_joint_sta te sem, T SM SEM B),
ifemor—ERROR)

retum;;
printf (‘Global sha red semaphore for Joint State is setat 0x% X\,

(char®) smObjLocalToGl oba (vod¥)an_jont state sem)),

}
 Finding the Shared Memory Semaphore

if(smNameFnd ('smJointStateSem”, (void &sm _jont state sem,& miype NO_WAIT—ERROR){
retum E RROR;

printf('Global s hared semaphore for Joint State is setat 0x%ox\n",am_joint_state sem))

10

11

How to use Shared-Memory

— Create shared memory object
— Create shared memory semaphore
—For using the share memory:

+ Task semaphore

+ Read form or write to memory

+ Give semaphore

What Is happening on Motor-Cortex?

* Motor-Cortex just executes Tasks
— At high sampling rate (e.g., 500Hz)
+ Read sensory date from shared memory
+ Generate desired trajectory and feedforward commands
+ Write desired trajectory and feedforward commands to shared memory
» Tasks need to consist of (at least) 3 function
— Initialization function of the task (not time critical)
—Run function of the task (real-time)
—Function to change the parameters of the task (not time critical)

12

Adding a New Task

* Write C-functions that contain the 3 required routines
+ (templates: my_task.c will be provided)

e Compile the C-code
e Add to VxWorks:
—E.qg., vxworks> |d < my_task.o

e Link the code into exisiting C-code
—E.qg., vxworks> addTask(“cs545”, myinit, myrun,mychange)
+ (this assumes you wrote the functions myinit, myrun,mychange)

13

What Iis happening in the INIT function?

—Bring the robot to an initial (safe) posture
—Initialize variables
—Trigger task execution

What happens in the RUN function?

15

 Assign appropriate values to feedforward commands and
desired trajectory variables (“joint_state”, “joint_des_state™)

* Definition of these structures (see SL.h)

SL_Jstate joint_state[N_ DOF+1]

SL_Dstate joint_des_state[N_DOF+1]

e Possible DOFs:

+ SFE (shoulder flex-extend)

+ SAA (shoulder aduction-abduction)
+ HR (humeral rotation)

+ EB (elbow)

+ WFE (wrist flex-extend)

+ WAA (wrist adduction-abduction)

+ Finger DOFS are not used

typedef struct { /* joint space state for each DOF */
real th; /*theta*/
real thd; /* theta-dot */
real thdd; /* theta-dot-dot */
real u; /*torque command */
real load; /* sensed torque */
} SL_Jstate;

typedef struct { /* desired values for controller */
real th; /* desired theta */
real thd; /* desired theta-dot */
real uff, /* feedforward command */

} SL_DJstate;

What happens in the CHANGE
function?

e Interactively change variable assignments, e.g., change
some gains for the “honey sphere”

