
1

CS545—Contents XXI

• Case Study: Gravity Compensation with the Sarcos
Dexterous Master Arm

+ A Gravity Compensation Control Circuit
uPrimary goals and subgoals

uMath and Algorithms

uAutomatic C-code generation with mathematica

+ How to embed the controller in the VxWorks environment
uSpinal-Cord: the low level I/O and negative feedback processor

u Interprocessor communication (semaphore, shared semaphores, shared objects)

uMotor-Cortex: the task level control processor

uCreating a task program

• Reading Assignment for Next Class
uSee http://www-slab.usc.edu/courses/CS545

2

Theory: Gravity Compensation

• At every timestep:
– Read current positions from sensors

– Calculate inverse static feedforward torque

desired

desired state
Sum3Sum2

In1 Out1

PD Controller

Robot

In1Out1

Inverse Static
Computation

3

How To Program The “Honey Sphere”?

• In Joint Coordinates:
– Within a certain joint angle range of each DOF, add a negative

component to the feedforward command proportional to the current
DOF velocity

• In Cartesian Coordinates:
– Check whether the endeffector is in the sphere

– If yes, calculate viscous friction force according to endeffector
velocity

– Convert viscous force into joint torques with Jacobian Transpose

– A “cheap version”: turn on viscous force in joint space if the
endeffector is in the Cartesian sphere

4

Reminder: Setup of the Robotic System

Robot

Host Computer
(rubens.usc.edu)
Sun Solaris 2.6

VME-Bus
Three PPC

MVME 2700 Targets
(vxWorks)

motor-cortex.usc.edu

spinal-cord.usc.edu

premotor-cortex.usc.edu

AJC-Bus

Ethernet

VME
Backplane

Parallel
I/O

“Analog
Wires”

VME
Backplane

5

What happens on Spinal-Cord?

• At high sampling rate (e.g., 500-1000Hz)
– Read sensory data (positions, velocities, torques from load cells)

– Process sensory data (filtering and numerical differentiation)

– Receive desired trajectory and feedforward commands through inter-
processor communication

– Safety Check: Are the desired values in a permissible range

– Generate total commands: u=PD+FF

– Safety Check: Are commands in a permissible range

– Send commands to the robot

– Provide the state of the robot in shared memory

6

Interprocessor Communication in
VxWorks: Shared Memory (VxMP)

• Initializing Shared Memory
+ The following C-code creates a shared memory object “sm_joint_state” on

the current processor

 if (smNameFind("smJointState", (void **)&sm _joint_state, &mtype, NO_WAIT) == ERROR) {
 sm_joint_state = (SL_ Jstate*)smMemCalloc(N_DOFS+1,sizeof(SL_Jstate *));
 if (sm_joint_state == NULL)
 return;
 error = smNameAdd("smJointState", (void*)smObjLocalToGlobal(sm_joint_state),
 sizeof (SL_ Jstate)*(N_DOFS+1));
 if (error == ERROR)
 return;
 printf("Global shared memory for Joint States is set at 0x%x. \n",
 (char *)smObjLocalToG lobal ((void*)sm_joint_state));
 }

7

Interprocessor Communication in
VxWorks: Shared Memory (cont’d)

• Using the Shared Memory
+ The following C-code finds a shared memory object and stores its pointer

in “sm_joint_state” on the current processor

 if (smNameFind("smJointState", (void **)&sm _joint_state, &mtype, NO_WAIT) == ERROR) {
 sm_joint_state = (SL_ Jstate*)smMemCalloc(N_DOFS+1,sizeof(SL_Jstate *));
 return E RROR;
}

printf("Global sh ared memory for Joint States was found at 0x%x.\n",sm_joint_state);

8

Semaphores

• Binary Flags to prioritize and synchronize tasks on a
processor or between processors

+ Semaphores have two possible states:
uFull (1)

uEmpty (0)

• Primarily two functions are used to handle semaphores
+ SemGive

+ SemTake

9

The Behavior of Semaphores

10

Shared Memory Semaphores

 if (smNameFind("smJointStateSem", (void **)&sm _joint_state_sem, & mtype ,NO_WAIT)==ERROR) {
 sm_joint_stat e_sem = semBSmCreate (SEM_Q_FIFO, SEM_FULL);
 if (sm_joint_state_sem == NULL)
 return;
 error = smNameAdd("smJointStateSem", (void*)sm_joint_sta te_sem, T_SM_SEM_B);
 if (error == ERROR)
 return;
 printf("Global shared semaphore for Joint State is set at 0x% x.\n",
 (char*) smObjLocalToGl obal ((void*)sm_joint_state_sem));
 }

• Initializing a Shared Memory Semaphore

• Finding the Shared Memory Semaphore

 if (smNameFind("smJointStateSem", (void **)&sm _joint_state_sem, & mtype ,NO_WAIT)==ERROR) {
 return E RROR;
 }
 printf("Global shared semaphore for Joint State is set at 0x%x.\n",sm_joint_state_sem);

11

How to use Shared-Memory

– Create shared memory object

– Create shared memory semaphore

– For using the share memory:
+ Task semaphore

+ Read form or write to memory

+ Give semaphore

12

What is happening on Motor-Cortex?

• Motor-Cortex just executes Tasks
– At high sampling rate (e.g., 500Hz)

+ Read sensory date from shared memory

+ Generate desired trajectory and feedforward commands

+ Write desired trajectory and feedforward commands to shared memory

• Tasks need to consist of (at least) 3 function
– Initialization function of the task (not time critical)

– Run function of the task (real-time)

– Function to change the parameters of the task (not time critical)

13

Adding a New Task

• Write C-functions that contain the 3 required routines
+ (templates: my_task.c will be provided)

• Compile the C-code

• Add to VxWorks:
– E.g., vxworks> ld < my_task.o

• Link the code into exisiting C-code
– E.g., vxworks> addTask(“cs545”,myinit,myrun,mychange)

+ (this assumes you wrote the functions myinit, myrun,mychange)

14

What is happening in the INIT function?

– Bring the robot to an initial (safe) posture

– Initialize variables

– Trigger task execution

15

What happens in the RUN function?

• Assign appropriate values to feedforward commands and
desired trajectory variables (“joint_state”, “joint_des_state”)

• Definition of these structures (see SL.h)
SL_Jstate joint_state[N_DOF+1]

SL_Dstate joint_des_state[N_DOF+1]

• Possible DOFs:
uSFE (shoulder flex-extend)

uSAA (shoulder aduction-abduction)

uHR (humeral rotation)

uEB (elbow)

uWFE (wrist flex-extend)

uWAA (wrist adduction-abduction)

uFinger DOFS are not used

typedef struct { /* joint space state for each DOF */
 real th; /* theta */
 real thd; /* theta-dot */
 real thdd; /* theta-dot-dot */
 real u; /* torque command */
 real load; /* sensed torque */
} SL_Jstate;

typedef struct { /* desired values for controller */
 real th; /* desired theta */
 real thd; /* desired theta-dot */
 real uff; /* feedforward command */
} SL_DJstate;

16

What happens in the CHANGE
function?

• Interactively change variable assignments, e.g., change
some gains for the “honey sphere”

