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2.1 MATHEMATICAL MODELS

The most important task confronting the control system analyst is developing a
mathematical model of the process of interest. In many situations the essence of
the analytical design problem is in the modeling: once that is done the rest of
the analysis falls quickly into place.

The control system engineer is often required to deal with a system having
a number of subsystems the physical principles of which depend on entirely
different types of physical laws. A chemical process, for example, may comprise
a chemical reactor, the dynamics of which are the subject of chemical kinetic
theory, a heat exchanger which is governed by thermodynamic principles, and
various valves and motors the dynamics of which depend on the physics of
mechanical and electrical systems. The controt of a typical aircraft entails an
understanding of the interaction between the airframe governed by principles of
aerodynamics and structural dynamics, the actuators which are frequently
hydraulic or electrical, and the sensors (gyroscopes and accelerometers) which
operate under laws of rigid body dynamics. And, if the human pilot of the
aircraft is to be considered, aspects of physiology and psychology enter into the
analysis.

One of the attractions of control system engineering is its interdisciplinary
content. The control system engineer sees the *big picture” in the challenge to
harmonize the operation of a number of interconnected subsystems, each of
which operates under a different set of laws. But at the same time the control
system engineer is almost totally dependent on the other disciplines. It is simply
impossible to gain a sufficient understanding of the details of each of the
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subsystems in a typical control process without the assistance of individuals
having an intimate understanding of these subsystems. These individuals often
have the knowledge that the control system analyst requires, but are not
accustomed to expressing it in the form that the analyst would like to have it.
The analyst must be able to translate the information he receives from others
into the form he needs for his work.

The analyst needs mathematical models of the processes in the system under
study: equations and formulas that predict how the various devices will behave
in response to the inputs to these devices. From the viewpoint of the systems
analyst each device is the proverbial “black box,” whose operation is governed
by appropriate mathematical models. The behavior of the overall process is
studied and controlled by studying the interaction of these black boxes.

There are two modeling and analysis approaches in customary use for
linear systems: the transfer-function or frequency-domain approach, to be
discussed in Chap. 4, and the state-space approach which is the subject of the
present chapter.

The feature of the state-space approach that sets it apart from the
frequency-domain approach is the representation of the processes under
examination by systems of first-order ditferential equations. This method of
representation may appear novel to the engineer who has become accustomed
to thinking in terms of transfer functions, but it is not at ail a new way of
looking at dynamic systems. The state-space is the mode of representation of a
dynamic sysiem that would be most naturai to the mathematician or the
physicist. Were it not that much of classical control theory was developed by
electrical engineers, it is arguable that the state-space approach would have
been in use much sooner.

State-space methods were introduced to the United States engineering
community through the efforts of a small number of mathematically oriented
engineers and applied mathematicians during the late 1950s and early 1960s.
The spiritual father of much of this activity was Professor Solomon Lefschetz
who organized a mathematical systems research group at the Research Institute
of Advanced Studies (RIAS) in Baltimore, Md. Lefschetz, already a world-
famous mathematician, brought together a number of exceptionally talented
engineers and mathematicians committed to the development of mathematical
control theory. At Columbia University another group, under the aegis of
Professor J. R. Ragazzini, and including R. E. Kalman and J. E. Bertram among
others, was also at work developing the foundations of modern control theory.

In the Soviet Union there was less of an emphasis on transfer functions
than on differential equations. Accordingly, many of the earliest uses of
state-space methods were made by investigators in the Soviet Union. Much of
the activity in the United States during the late 1950s entailed translation of the
latest Russian papers into English. The Moscow location of the First Congress
of the International Federation of Automatic Control (IFAC) in 1960 was
entirely appropriate, and provided the first major opportunity for investigators
from all over the world to meet and exchange ideas. Although the IFAC
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congress was concerned with components and applications as well as with
control theory, much of the interest of the meeting was on the newest theoretical

developments.

2.2 PHYSICAL NOTION OF SYSTEM STATE

The notion of the state of a dynamic system is a fundamental notion in physics.
The basic premise of newtonian dynamics is that the future evolution of a
dynamic process is entirely determined by its present state. Indeed we might
consider this premise as the basis of an abstract definition of the state of a

dynamic system:

The state of a dynamic system is a set of physical quantities, the specifica-

tion of which (in the absence of external excitation) completely determines
the evolution of the system.

The difficulty with this definition, as well as its major advantage, is that the
specific physical quantities that define the system state are not unique, aithough
their number (called the system order) is unique. In many situations there is an
obvious choice of the variables (state variables) to define the system state, but
there are also many cases in which the choice of state variables is by no means
obvious.

Newton invented calculus as a means of characterizing the behavior of
dynamic systems, and his method continues in use to this very day. In
particular, behavior of dynamic systems is represented by systems of ordinary
differential equations. The differential equations are said to constitute a mathe-
matical model of the physical process. We can predict how the physical process
will behave by solving the differential equations that are used to model the
process.

In order to obtain a solution to a system of ordinary differential equations,
it is necessary to specify a set of initial conditions. The number of initial
conditions that must be specified defines the order of the system. When the
differential equations constitute the mathematical model of a physical system,
the initial conditions needed to solve the differential equations correspond to
physical quantities needed to predict the future behavior of the system. It thus
follows that the initial conditions and physical state variables are equal in
number.

In analysis of dynamic systems such as mechanical systems, eleciric
networks, etc. the differential equations typically relate the dynamic variables
and their time derivatives of various orders. In the state-space approach, all the
differential equations in the mathematical model of a system are first-order
equations: only the dynamic variables and their first derivatives (with respect to
time) appear in the differential equations. Since only one initial condition is
needed to specify the solution of a first-order equation, it follows that the

oA
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number of first-order differential e i i |
quations in the mathematic, i
to the order of the corresponding system ol model s equal
i ! . m.
om__nnrw:a<nm5_n <m.5mv_nm that appear in the system of first-order equations are
cal :S:MNEEM cpazazmm. _.w.o_.m the foregoing discussion, it should be clear that
r of state variables in the model of a i i
f : . physical process is uni
although the identity of these variables may not be unique. A few f; i
examples serve to illustrate these points. . amiliae

Ex s
: “_.H“.m_mew“mnﬂa”“w “M”M“ upon by friction and spring forces The mechanical system consisting of
2 mags which d upon 3. the forces of frictien and a spring is a paradigm of
o rder .<=m=:.n process which one encounters time and again in control processe )
onsider an object of mass M moving in a line. In accordance with Newton's “”.s_ of

motion, the acceleration of the o 1
ect L acti i
f th bj s the total force f acting on the object divided v< the

M a0

_—.M—,_.MMM ~”n au.__.nn:n_.._,.. o.:_\ m_m in the direction of x. We assume that the force f is the sum of two

, namely a friction force f| and a spring force /5. B

¢ ) >. Both of these forces physi

resist the motion of the object. The fricti s R

. iction force tends to resist the velocity: i icti
pesist the motion of the o . e velocity: there is no friction
y is nonzero. The spring force, on the other h: [ i

o ; . : 5 er hand, is proportional to the

ount that the spring has been compressed, which is equal to the amount that the object has

been displaced. Thus
f=Hth

where fi= IUA%I;V
' dt

S =—x(x)

ax_ [ fa
o mAmﬂv + i»@\_s (2A.2)

A more familiar form of (2A.2) is the second-order differential equation

Thus

K &[Na + A,«
o o) TR =0 :>.z
But (2A.2) i i
G.»Mv\»cwv:,m a G:.: more appropriate for the state-space representation. Differentiat equation
go.m:.n. | s ne,:.é_nzn A~>.uv._m. a second-order ditferential equation and its solution requires
._._ Ecnc.nn__:c:w“ X, the initial position, and X, the initial <o_0o:.<
av\:m:_wnm Mw_ﬂmwmm_m_numvmnn representation, we need two state variables in terms of which the
dynamics <m1m_v_.nv.,o>_=:,7n o%ammmnm as two first-order differential equations. The obvious
s in this case are the displacement x and th i .

! ab the d L e velocity v = dx/di. The two

first-order equations for the process in this case are the equation by which velocity is defined

dx

e (284)

and (2A.2) expressed in terms of x and v. Since d*x/dr* = dv/dr, (2A.2) becomes

dv

—=—[B) + <(x)YM (2A3)
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Thus (2A.4) and (2A.5) constitute a system of two first-order differential equations in
terms of the state variables x and b.

If we wish to contro! the motion of the object we would include an additional force f,
external to the system whiich would be added to the right-hand side of (2A.5)

dv

e ~[Bo}+ k(XYM + fo/ M (2A.6)

How such a control force would be produced is a matter of concern to the control system
designer. But it is not considered in the present example.

in a practical system both the friction force and the spring force are nonlinear functions
of their respective variables and a realistic prediction of the system behavior would entail
solution of (2A.4) and ((2A.S) in which 8(v) and x(x)} are nonlinear functions of their
arguments. As an approximation, however, it may be permissible to treat these functipns as
being linear

) g
A\xl = Pa
r{x) = Kx

where B and K are constants. Often 8{ )} and «( ) are treated as linear functions for purposes
of control system design, but the accurate noniinear functions are used in evaluating how the
design performs. .

A block diagram representation of the differential equations (2A.4) and (2A.6), in
accordance with the discussion of Sec. 2.3, is shown in Fig. 2.1.

Example 2B Electric motor with inertia load One of the most common uses of {eedback control
is to position an inertia load uvsing an electric motor. (See Fig. 2.2.) The inertia load may
consisi of a very laige, rnassive object such as a radar antenna or a small object such as a
precision instrument. An important aspect of the control system design is the selection of a
suitable motor, capable of achieving the desired dynamic response and suited to the objective
in cost, size, weight, etc. An electric motor is a device that converts electrical encrgy {input) to
mechanical energy’ (output). The electro-mechanical energy transducer relations are idealiz-
ations of Faraday's law of induction and Ampere’s law for the force produced on a conductor
moving in a magnetic field. In particular, under ideal circumstances the torque developed at
the shaft of a motor is proportional to the input current to the motor; the induced emf v
(' back emf”) is proportional.to the speed w of rotation

=K (2R.1)
v= Ky (2B.2)
\.: P l7 » — vl].\m
M \
- Displacement
. Velocity '
Friction BC)
force
Spring ay
force

Figure 2.1 Block diagram representing motion of mass with friction and spring reaction forces.

Figure 22 DC motor driving
inertia foad.

The electrical power p, input to the motor is the product of the current and the induced

emf

p. = vi = Kyw1/K, (2B.3)
The mechanical output power is the product of the torque and the angular velocity

P = w7
Thus, from (2B.3)
Pe = m_\ﬁ!
If the energy conversion is 100 percent efficient, then
K =K,=K

If the energy-conversion efficiency is less than 100 percent then K,/ K, > 1.

To completely specify the behavior of the system we need the relationships betwzen the
input voltage e and the induced emf, and between the torque and the angular velocity of the
motor. These are given by

e—-v=Ri (Ohm's law) (2B.4)
where R is the electrical resistance of the motor armature, and

.\&E
r=J—
dl (2B.5}

where J is the inertia of the load. From (2B.1), (2B.5), and (2B.4)

.\&E - K. K,
e = R (e—v) (2B.6)
On using (2B.2) this becomes
. do K, KK
g _ &, _Rhs
i R°T R “
dw K K K
or el Sl S §
@~ IR “TIR® (287)

which is a first-order equation with the angular velocity  as the state variable and with &
serving as the external control input.

The first-order model of {(2B.7) is suitable for control of the speed of the shaft rotation.
When the position 8 of the shaft carrying the inertia J is also of concern, we must add the
differential equation

a_ . (28.8)

de

This and (2B.7) together constitute a second-order system.
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€ K
B >

Angular
velocity angle

Figure 2.3 Block diagram representing dynamics of de¢ motor driving inertia load.

Equations (2B.7) and {2B.8) can be arranged in the vector-matrix form

d| e 4] I (2 1]
= + e

dtlw 0 -KK.fJRjlw K,/JR

A block-diagram representation of the differential equations that represent this system is
given in Fig. 2.3.

Example 2C Electrical network and its thermal analog It is not generally required to design
feedback control systems for electrical networks comprising resistors, capacitors, and inductors.
But such netwarks often are mathematically analogous to mechanical systems which one does
desire to control, and an engineer experienced in the analysis of electrical networks might be
mare comfortable with the latzer than with the mechanical systems they represent.

One class of mechanical system which is analogous to an electrical network is a thermal
conduction system. Electrical vollages are analogous to temperatures and currents are
analogous to heat flow rates. The paths of conduction of heat between various points in the
system are represented by resistors; the mass storage of heat in various bodies is represented
by capacitances: the input of heat by current sources; and fixed temperatures at the boundaries

\ of the system by voltage sources.

Table 2C.1 summarizes the thermal quantities and their electrical analogs.

As an illustration of the use of electrical analogs of thermal systems, consider the system
shown in Fig. 2.4 consisting of two masses of temperatures T, and T, embedded in a thermally

Table 2C.1 Electrical analogs of thermal systems

Thermal system Electrical system

Quantity Symbol Unit Quantity Symbol Unit
Temperature T deg Voltage v volt
Heat flux q cal/s Current i ampere
Thermal resistivity R deg - s/cal Resistance R ohm
Thermal capacity C cal/deg Capacitance C farad
. . 1 1

Conduction equation ¢ = R (T,—T)) i= (v, — 1))
5t i dT ¢ dv 1

arage equati —_—=— — =i

geequation T c at C
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Figure 2.4 Thermal system with two
capacitances.

insulating medium contained in a metal container which, because of its high thermal
conductivity, may be assumed to have a constant temperature T,. The temperatures T, and T,
of the masses are to be controlted by controlling the temperature T, of the container.

An electrical analog of the system is shown in Fig. 2.5. The capacitors C; and C,
represent the heat capacities of the masses; the resistor R; represents the path of heat flow
from mass | to mass 2; R, and R, represent the heat low path from these masses to the metal
container.

The differential equations governing the thermal dynamics of the mechanical system are
the same as the differential equations of the clectrical system, which can be obtained by
various standard methods. By use of nodal analysis, for example, it is determined that

dv 11 1 i
C—2Hl—+t— |y ~—v,-—e=
va AR TR R TR ST
@C.1)
du, | I i 1
e (LY L g

The appropriate state variables for the process are the capacitor voltages v, and v,. The
temperature of the case is represented by a valtage source &, which is the input variable to the
process. Thus the differential equations of the process are

dv, AL 1 1
o —+—p + vy + e

at . G,\R, R, C\R, * R,

(2C.2)
LS SR (L L RS
dt GR, ' GA\R;, R, ’ wuﬁwmo

R R,

)
e

vy v;
R

C, C;

Figure 2.5 Electrical analog of thermal system of Fig, 2.4.
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The foregoing examples are typical of the general form of the dynamic
equations of a dynamic process. The state variables of a process of order k are
designated by x, X5, ..., x; and the external inputs by u,, u, ..., 1

dx,
Xy = T = fi0x0, Xay ooy Xp tyy Uny oo, U 1)
dx,
Xy = 5- = ol X0, Xy o o0y Xig Ui, My eeoy Uy )
(2.1)
: dx,
Xx = M = filX, Xoy oo, X Uy, Uy, Uy 1)

These equations express the time-derivatives of each of the state variables as
general functions of all the state variables, inputs, and (possibly) time. The dot
over a variable is Newton’s notation for the derivative with respect to time.

To simplify the notation the state variables x,,x,,...,x, and control
variables u, u,, ..., u; are collected in vectors

ol w=|: (2.2)

called the state vector and the input vector, respectively. These are vectors in the
mathematical sense and not necessarily in the physical sense. The components
of a physical vector are usually projections of a physical quantity (e.g., force,
velocity) along a set of reference axes. But the components of the state vector of
a dynamic system generally do not have this interpretation and need not even
represent the same kind of physical quantities: As our examples show, position
and velocity are typical components of a mathematical state vector.

In some books the state vector is printed in a special typeface such as
boldface x, to distinguish it from a scalar variable x. We have chosen not to use
any special typeface for the state vector since there is rarely any possibility of
confusing the entire state vector x with one of its components x; (always written
with a subscript). In subsequent chapters we will make use of a boldface symbol
x to denote the metastate of a system, which is the vector comprising the state
(or error) vector, concatenated with the exogenous state vector X, as explained
in Chap. 5 and later.

Using vector notation, the set of differential equations (2.1) that defines a
general process can be written compactly as the single vector differential
equation

dx

quu\F u, 1) (2.3)

STATE-SPACE REPRESENTATION OF DYNAMIC SYSTEMS 23

where f(x, u, t} is understood to be a k-dimensional vector-valued function of
k+ 1+ 1 arguments. When time ¢ does not appear exphcitly in any of the
functions f; in (2.1), i.e., in the vector f of (2.3), the system is said to be
time-invariant. If (2.3} is an accurate model of a physical process, we would
expect it to be time-invariant, since we do not have physical laws that change
with time. In many situations, however, the differential equations represented
3.\ (2.3) are only an approximate model of the physical world, either because a
more accurate model is not known, or because it is too complicated to be usefu]
in Eo intended application. Very often such approximate models are time-
varying.

An exact model of a physical process is usually nonlinear. But fortunately
many processes can be adequately approximated by linear models over a
significant range of operation. In the state-space model of a linear process, the
general diflerential equations of (2.1) take the special form:

. dx

X; = q&lnp =a, (Ox;+ -+ a()x, + by(thu  + -+ b {0y

. dx,

X, = 5= ay(x, + -+ ay(th + by (Duy + -+ - + by,
e 2.4)
. dx,

Xy = ﬂ = D».Anvxﬂ_ + -4 Qr»A‘vHr + @k—Aav:_ 4+ @iﬂuv—:

In vector notation, using the definitions of the state and control vectors as
defined in (2.2), the linear dynamic model of (2.4) is written

. dx
xnwﬂu\::.«+mﬁ:= (2.5)

where A(t) and B(t) are matrices given by

an(t) - - a (1) by(1) -+ byy(1)

A1) = ay () -+ axlt) B(1) = by (1) + - byylt)

ag, (1) - - ay (1) b (1) -+ - by(1)

(2.6)

It is noted that the matrix A(t) is always a square (k by k) matrix, but that
Em._.:mix B(1) need not be square. In most processes of interest the number /
of E.n.:m 1s smaller than the number of state variables: B(r) is a tall, thin
matrix. Often there is only one input and the matrix B(/) is only one column
wide.

When the system is time-invariant, none of the elements in the matrices A
and B depend upon time. Most of this book is concerned with linear, time-
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invariant processes, having the dynamic equations
= Ax + Bu 2.7)

where A and B are constant matrices.

Although the concept of the state of a system is fundamental, there are
many situations in which one is not interested in the state directly, but only in
its effect on the system output vector y(r)

1)
%N.Tu

y(1) = (2.8)

V(1)

for a system having m outputs. In a linear system the output vector is assumed
to be a linear combination of the state and the input

y(t) = C(t)x(1) + D(t)u(t) 2.9)

where C(¢) is an m X k matrix and D(¢) is an m X 1 matrix. If the system is
time-invariant, C(t) and D(1) are constant matrices.

The outputs of a system are generally those quantities which can be
observed, i.e., measured by means of suitable sensors. Accordingly, the output
vector is called the observation vector and (2.9) is called the observation
equation. )

The presence of the matrix D in (2.9) means that there is a direct
connection between the input u(¢) and the output y(?), without the intervention
of the state x{t). Although there is no general reason for the matrix D to be
absent in a practical application, it turns out that it is absent in the overwhelm-
ing majority of applications. This is fortunate, because the presence of D
increases the complexity of much of the theory. Thus most of our development
will rest on the assumption that D = 0.

The input vector u in (2.7) represents the assemblage of all physical
quantities that affect the behavior of the state. From the control system design
standpoint, however, the inputs are of two types:

Control inputs, produced intentionally by the operation of the control system,
and ,

“Exogenous” inputs, present in the environment and not subject to control
within the system.

It is customary to reserve the symbol u for the control inputs and to use another
symbol for the exogenous inputs. (The word “exogenous,” widely used in the
field of economics and other social sciences, is gaining currency in the field of
control theory.) In this book we shall find it convenient to represent the
exogenous inputs by the vector x,. The use of the letter “x" suggests that the
exogenous inputs are state variables and so they may be regarded: x, may be

STATE-SPACE REPRESENTATION OF DY C SYSTEMs 25
regarded as the state of the environment. (Later in the book we shall concatenate
the state x of the system to be controlled with the state x, of the environment
into a metastate of the overall process.)

Thus, separating the input » of (2.7) into a control input and an exogenous
input, (2. 3 becomes

= Ax + Bu + Ex, (2.10)

which, together with (2.9) will serve as the general representation of a linear
system.

2.3 BLOCK-DIAGRAM REPRESENTATIONS

System engineers often find it helpful to visualize the relationships between
dynamic variables and subsystems of a system by means of block diagrams.
Each subsystem is represented by a geometric figure (such as a rectangle, a
circle, a triangle, etc.} and lines with arrows on them show the inputs and the
outputs. For many systems, these block diagrams are more expressive than the
mathematical equations to which they correspond.

The relationships between the variables in a linear system (2.4) can be
expressed using only three kinds of elementary subsystems:

Integrators, represented by triangles
Summers, represented by circles, and
Gain elements, represented by rectangular or square boxes as shown in Fig. 2.6.

) An integrator is a block-diagram element whose output is the integral of the
input; put in other words, it is the element whose input is the derivative of the
output.

X agt N

(b)

X k(t)x
¥ k() [

Figure 2.6 Elements used in block-diagram representation of
(c} linear systems. (a) Integrator; {#) Summer; {c} Gain element.
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A summer is a block-diagram element whose output is the sum of all its
inputs.

A gain element is a block-diagram element whose output is proportional to
its input. The constant of proportionality, which may be time-varying, is placed
inside the box (when space permits) or adjacent to it.

Note that the integrator and the gain element are single-input elements; the
summer, on the other hand, always has at least two inputs.

A general block diagram for a second-order system (k =2) with two
external inputs u, and u, is shown in Fig. 2.7. Two integrators are needed, the
outputs of which are x, and x,, and the inputs to which are x, and x,,
respectively. From the general form of the differential equations (2.4) these are
given by .

oy Ly {
Xy =apx tapx; t byxt biax,
Xy = QX t apx; + by xy + byxs

a X}

which are the relationships expressed by the outputs of :“n two summers shown
in Fig. 2.7.

The same technique applies in higher-order systems. If the A matrix has
many nonzero terms, the diagram can look like a plate of spaghetti and

meatballs. In most practical cases, however, the A matrix is fairly sparse, and

¥
ay,
Uy ,_.: X
by p——>
2
b2
L3
by
ay
X, X3
¥ by >
22
[

Figure 2.7 Block diagram of general second-order linear system.
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with some attention to layout it is possible to draw a block diagram with a
minimum of crossed lines.

To simplify the appearance of the block-diagram it is sometimes convenient
to use redundant summers. This is shown in Fig. 2.7. Instead of using two
summers, one feeding another, in front of each integrator we could have drawn
the diagram with only one summer with four inputs in front of each integrator
But the diagram as shown has a neater appearance. Another technique _m
simplify the appearance of a block diagram is to show a sign reversal by means
of a minus sign adjacent to the arrow leading into a summer instead of a gain
element with a gain of —I. This usage is illustrated in Figs. 2.1 and 2.3 of the
foregoing examples.

Although there are several international standards for block-diagram sym-
vw_m, these standards are rarely adhered to in technical papers and books. The
differences between the symbols used by various authors, however, are not large
and are not likely to cause the reader any confusion.

The following examples illustrate the use of matrices and block diagrams to
represent the dynamics of various processes.

Often it is convenient to express relationships between vector quantities by
means of block diagrams. The block-diagram symbols of Fig. 2.6 can also serve
to aa.mmmnm:w operations on vectors. In particular, when the input to an integrator
of Fig. 2.6(a) is a vector quantity, the output is a vector each component of
which is the integral of the corresponding input. The summer of Fig. 2.6(b)
Eﬁ;amw:”m a vector summer, and the gain element box of Fig. 2.6(c) represents
a matrix. In the last case, the matrix need not be square and the dimension of
the vector of outputs from the box need not equal the dimension of the vector

Xy
Exogenous
input vector
E
Control S
( tate O
utput
input <nn8_.r vector <nn_wq
- B — | o~
X X ¥y
4
—_— A
» D

Figure 2.8 Block-diagram representation of general linear system,
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of inputs. Using this mode of representation, the block diagram of Fig. 2.8
represents the general system given by (2.9) and (2.10).

Example 2D Hydraulically actuated tank gun turret The control of a hydraulically actuated
gun turret in an experimental tank has bceen studied by Loh, Cheok, and Beck[1] The
linearized dynamic model they-used for each axis {elevation, azimuth) is given hy

=0

w=p+d,
{2D.1)
] K, K,
P Sapt Eg -t b,

4d=-K,Lgqg- K.Ksplp+ Kt d,

where x, = # = turret angle
X; = w = turret angular rate
= angular acceleration produced by hydraulic drive
X3 = g = hydraulic servo valve displacement
control input to servo valve
K,, = servo motor gain
turret inertia
m = motor natural frequency
K, = servo valve gain
ap = differential pressure feedback coefficient

-
ki

~
I

I

=
li

=]
-~
I n

e
I

The quantities d,, d,, and d, represent disturbances, including effects of nonlinearities not
accounted for by the linearized modet (2D.1}.
With the state variable definitions given above, the matrices of this process are

0 1 0 0 0
0 0O
A lo 0 [ .
0 K.// -4, ~K,./J 0
0 0 —KKiJ -KL, K,

Figure 2.9 Dynamic mode] of hydraulically actuated tank gun turret.

w W [
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Table 2D.1 Numerical values of parameters
in tank turret control

Numerical value

Parameter Azimuth Elevation
K, 94.3 94.3

L, 1.00 1.07
J{ft-lb - 5%) 7900. 2070.

K,, 8.46 x [0° 1.96 x 10°
w,, (rad/s) 459 173
Ky, 633 x10°° 3.86 x10°°

Numerical data for a specific tank were found by Loh, Cheok, and Beck to be as given in
Table 2D.1

A block-diagram representation of the dynamics represented by (2D.1} is shown in Fig. 2.9,

2.4 LAGRANGE’S EQUATIONS

The equations governing the motion of a complicated mechanical system, such
as a robot manipulator, can be expressed very efficiently through the use of a
method deveioped by the eighteenth-century French mathematician Lagrange.
The differential equations that result from use of this method are known as
Lagrange’s equations and are derived from Newton’s laws of motion in most
textbooks on advanced dynamics.[2, 3]

Lagrange’s equations are particularly advantageous in that they automati-
cally incorporate the constraints that exist by virtue of the different parts of a
system being connected to each other, and thereby eliminate the need for
substituting one set of equations into another to eliminate forces and torques of
constraint. Since they deal with scalar quantities {(potential and kinetic energy)
rather than with vectors (forces and torques) they also minimize the need for
complicated vector diagrams that are usually required to define and resolve the
vector quantities in the proper coordinate system. The advantages of Lagrange’s
equations may also turn out to be disadvantages, because it is necessary to
identify the generalized coordinates correctly at the very beginning of the
analysis of a specific system. An error made at this point may result in a set of
differential equations that look correct but do not constitute the correct model
of the physical system under investigation.

The fundamental principle of Lagrange’s equations is the representation of
the system by a set of generalized coordinates ¢; (i = 1, 2, . . . , 7}, one for each
independent degree of freedom of the system, which completely incorporate the
constraints unique to that system, i.e., the interconnections between the parts of
the system. After having defined the generalized coordinates, the kinetic energy
T is expressed in terms of these coordinates and their derivatives, and the
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THREE

DYNAMICS OF LINEAR SYSTEMS

3.1 DIFFERENTIAL EQUATIONS REVISITED

In the last chapter we saw that the dynamic behavior of many dynamic systems
is quite naturally characterized by systems of first-order differential equations.
For a general system these equations in state space notation take the form

x=flx,ut)
and in a linear system they take the special form
%= A(t)x + B{(H)u (3.1)
where x = [x,, X3, ..., %] is the system state vector and u =[uy, tsy ..., Uyl is

the input vector.
If the matrices A and B in (3.1) are constant matrices, i.e., not functions of

time, the system is said to be “time-invariant.” Time-varying systems are
conceptually and computationally more difficult to handle than time-invariant
systems, For this reason our attention will be devoted primarily to time-
invariant systems. Fortunately many processes of interest can be approximated
by linear, time-invariant models. '

In using the conventional, frequency-domain approach the differential
equations are converted to transfer functions as soon as possible, and the
dynamics of a system comprising several subsystems is obtained by combining
the transfer functions of the subsystems using well-known techniques (reviewed
in Chap. 4). With the state-space methods, on the other hand, the description of
the system dynamics in the form of differential equations is retained throughout
the analysis and design. In fact, if a subsystem is characterized by a transfer

58

S,
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E:o:.o: :. is often necessary to convert the transfer function to differential
B:m:o:.n_. in order to proceed by state-space methods. N
in this .n_z_vﬁ_. we shall develop the general formula for the solution of
w.mao?:_m:_x differential equation in the form of (3.1) in terms of a <nm
important matrix known as the state-transition matrix which describes how :Mu\
state x(/) ow.:.o system at some time ¢ evolves into (or from) the state x{7) %
some other time 7. For time-invariant systems, the state-transition matrix is the
matrix exponential function, which is easily calculated. For most time-varyi
systems, =o€n.<m: the state-transition matrix, although known to exist nm_.wzﬁm
c.n expressed in terms of simple functions (such as real or complex mw onen
:w_mv.o_‘ even not-so-simple functions (such as Bessel functions :V%w_.mmovaoim
m.::o:o:mv.. Thus, while many of the results developed for :En-m,_._ﬁami system
apply to :E.o-ﬁ.d::m systems, it is very difficult as a practical matter 8% ca .
o_:. the required calculations. This is one reason why our attention is nonmsﬂm
:::s._v\ .::: not exclusively) to time-invariant systems. The world of real
applications contains enough of the latter to keep a design engineer occupied

3.2 SOLUTION OF LINEAR DIFFERENTI
IN STATE-SPACE FORM AL EQUATIONS

Time-invariant dynamics The simplest form of the general differential equation

of the form (3.1) is the ‘“homogeneous,” i.e., unforced equation
| X = Ax (3.2)
where A is a constant kK by & matrix. The solution to (3.2) can be expressed as
x(1) = e*c (3.3)
where e’ is the matrix exponential function
At ¢ r
et =T+ At+ A*— Pt
! >m+>u_+ (3.4)

leri - »p
A v o] erif AU.UV Om-u.uﬁ_

dx(t) d,
a atee (3.5)

and, from the defining series (3.4),

& A ) hu 2

—_— Yy = 32 o= ! /

S(eM)=AT A+ A TR |>T+\:+>NM+:.\ =Ae™
Thus (3.5) becomes

dx(t) ., 4,
o Ae®'c = Ax(1)
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which was to be shown. To evaluate the constant ¢ suppose that at some time 7

the state x{7) is given. Then, from (3.3),
x(1) = e™c (3.6)

Multiplying both sides of (3.6) by the inverse of e we find that
c= AN}.«vl_HC\Vﬁh\
Thus the general solution to (3.2) for the state x{1) at time f, given the state x(7)
at time 7, Is
x(1) = eM(e™) "x(7) 3.7
The following property of the matrix exponential can readily be established by
a variety of methods—the easiest perhaps being the use of the series definition

(3.4)—
m}f.; ny _ m\»q_m\fu Awww

for any ¢, and f,. From this property it follows that
(e") ' =e (3.9)

and hence that (3.7) can be written
x(1) = e*U 7 x(1) (3.10)

The matrix e*~™ is a special form of the state-transition marix to be discussed

subsequently.
We now turn to the problem of finding a * particular” solution to the

nonhomogeneous, or “forced,” differential equation (3.1) with A and B being
constant matrices. Using the “method of the variation of the constant,”[1] we
seek a solution to (3.1) of the form

x(1) = e*e(1) 3.1

where c(t) is a function of time to be determined. Take the time derivative of
x(t) given by (3.11) and substitute it into (3.1) to obtain:

Ae™e(t) + e®'é(1) = Ae™c(r) + Bu(1)

or, upon cancelling the terms Ae*c(1) and premultiplying the remainder by
—Ar
Q b}

é(1) = e M Bu(t) (3.12)

Thus the desired function c¢(f) can be obtained by simple integration (the
mathematician would say *'by a quadrature”)

c(r)=1 e ™ Bu(r)dr
T

The lower limit T on this integral cannot as yet be specified, because we will
need to put the particular solution together with the solution to the
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homogeneous equation to obtain the complete (general) solution. For the
present, let T be undefined. Then the particular solution, by (3.11), is

¢ t

e ™Bu(A)dr =

T T

x(t) = e™ e M Bu(A) dA (3.13)
In obtaining the momo:a integral in (3.13), the exponential e*’, which does not
depend on the variable of integration A, was moved under the integral, and
property (3.8} was invoked to write e?e™ 4 = M), ,

._..:n .moSEnS solution to (3.1) is obtained by adding the “*complementary
solution™ (3.10) to the particular solution (3.13). The result is

1

. e*""MBu(A) dr (3.14)

x(1) = e x(7) +

We can now determine the proper value for lower limi i
t T on th
t = 7 (3.14) becomes n the tniegral. At

T

x(r) = x(r)+ | "M Bu(r)dA (3.15)

T
Thus, the integral in (3.15) must be zero for any u(t?), and this is possible only

if T = 7. Thus, finally we have the complete solution to (3.1) when A and B are
constant matrices

i

x() = e x(r)+ | e M Bu(r) dA (3.16)

H:._m important refation will be used many times in the remainder of the book
It is worthwhile dwelling upon it. We note, first of all, that the solution is z_m.
m.:.:. of two terms: the first is due to the “initial” state x(7) and the second—
m..n ._a#nmnm1|mm due to the input u(7) in the time interval 7 = A = ¢ between the
initial™ time T and the “present” time f. The terms initial and present are
M:o_omna in quotes to .ao:ogm the fact that these are simply convenient defini-
s_\ﬂ_w” M_J:Mn...ﬁn is no requirement that ¢ = =. The relationship is perfectly valid even
. >:o§.2 fact worth noting is that the integral term, due to the input, is a
convolution integral”: the contribution to the state x(f) due to the m:?_m uis
m:o convolution of 1 with e*'B. Thus the function e*'B has the role of the
impulse response[ 1] of the system whose output is x(f) and whose input is u(1).
1f E.m output y of the system is not the state x itself but is defined by the
observation equation

y=0Cx

then this output is expressed by

i
y(1) = Ce* x(1)+ | Ce*“™MBu(r) dr 3.17)

T

AR
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and the impulse response of the system with y regarded as the output is
Ce*'"MB.

The development leading to (3.16) and (3.17) did not really require that B
and C be constant matrices. By retracing the steps in the development it is
readily seen that when B and C are time-varying, (3.16) and (3.17) generalize to

1

x(6) = A Ox(r) + | eV B(A)u(A) di (3.18)

and

y(1) = C(1) e Vx(r) + * C(1)y e " ™M B(A)u(r) dr (3.19)

T

Time-varying dynamics Unfortunately, however, the results expressed by (3.18)
and (3.19) do not hold when A is time-varying.

In any unforced (homogeneous) system the state at time ¢ depends only on
the state at time 7 In a linear system, this dependence is linear; thus we can
always write the solution to X = A(t)x as

x(t) = &1, 7)x(71) (3.20)

The matrix ®(z, 7) that relates the state at time ¢ to the state at time 7 is
generally known as the state-transition matrix because it defines how the state
x(7) evolves (or “transitions™) into (or from) the state x(t). In a time-invariant
system ®(1, 7) = e*""7, but there is no simple expression for the state-transi-
tion matrix in a time-varying system. The absence of such an expression is
rarely a serious problem, however. It is usually possible to obtain a_control

e i b4

system design from only a knowledge of the dynamics matrix_A(1), without

having an expression for the transition matrix.

iy - Nuiadiniy daldaiiaivte et S

The complete solution to (3.1) can be expressed in the form of (3.18), with
the general transition matrix &(t, ) replacing the matrix exponential of a
time-invariant system. The general solution is thus given by

3

®(t, AYB(A)u(r) dr C.NC,

Il

x(t) = ®{t, T)x(7) +

T

il

y(1) = C(NHP(1, T)x(7) + _QAD@Q,:E»?QV dr (3.22)

The derivation of (3.21) follows the same pattern as was used to obtain (3.18).
The reader might wish to check his comprehension of the development by
deriving (3.21). The development can also be found in a number of textbooks
on linear systems, [1] for example.

The state-transition matrix The state-transition matrix for a time-invariant sys-
tem can be calculated by various methods. One of these is to use the series
definition (3.4) as will be illustrated in Example 3A. This is generally not a
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oo=<a::w._: method for pencil-and-paper calculations. It sometimes may b
appropriate for numerical calculations, although there are better methods umm :
Note 3.1.) For pencil-and-paper calculations, the Laplace transform :._n::.a v
be developed in Sec. 3.4, is about as good a method as any. i

It w,:oc_a be noted that the state-transition matrix for a time-invari
system is a w.:_._n:o: only of the difference 1 — v between the initial time 7 h““
the E.omn:".:_‘:m.‘ as would be expected for a time-invariant system. (See Note
umv ﬁ_.zm, in a time-invariant system, there is no loss in generality in taking the
_:__:m” HmBm T ﬁ.o._o.n zero and in computing ®(1) = e™. If, for a subsequent
MwﬁMV-_MVM_WMLMM:_._M:“M__“_WM _M not zero, and ®(y, 7) is needed, it is obtained from
o ._: a time-varying system this procedure is of course not valid; both the
”::m_ time and the n.:.nmo_: time must be treated as general <m,_.mmv_nm. A
e_mm,wva.amm of ®(1,0) is not adequate information for the determination of

>_§w=.m: the state transition matrix cannot be calculated analytically in
general, it is sometimes possible to do so because of the very simple m:,:o:._nw of
the dynamics .Smix A(1), as will be illustrated in the missile-guidance example
c&oﬂ.. Thus, if an application arises in which an expression is necessary for “_n
m_.m:m_:o: E.mc.mx of a time-varying system, the engineer should consider *hav-
ing a go at it,” using whatever ad hoc measures appear appropriate.

Example 3A Motion of mass without friction | i i

t friction The differential equation for iti
5 i th 2
mass to which an external force f is applied is q e position of a

X=f/m=u {3A.1)

{The no_.m:.c_ variable u = f/m in this case is the total acceleration.)
Delining the state variables by

results in the state-space form
X =x

R (3A2)

) el

Using the series definition {3.4) we obtain the state transition matrix

so-cr-fy ) -[0 JL
¢ 1 00 0 |

The series terminates after only two terms,
The integral in (3.18) with 7 = 0 is given by

fLoa -‘c\d:::;
. | u(A)dax =

t D 1
‘_. u{A) da
o

\u,.rsm. for this example,
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Thus, the solution to (3A.2), using the general formula {3.18} is given by Hence
' Sultr) =0 gl = (3B.7)

x, (1) = x,(0) + 1x,{0) + b\ Au(A) dia ™ i
o ¢ easiest way to get the first row (¢, and ¢,,) of the transiti ateix i
which can be written ! 1) of the transition matrix is to use (38.3)

!
xN:vhxu::+_» u(A) da o

. V(T —¢PAé) = 2t8)  forall ¢
Obviously these answers could have been obtained directly from (3A.1) without using all the Thus
state-space apparatus being developed. This apparatus has its greatest utility when simple V(T — 1)%A(7) = 2(7)
methods fail.

But, from (38.6), z(£) = z{7). Hence
Example 3B Missite guidance The equations of motion (assumed to be confined to a plane) of .w . 1
a missile moving at constant speed, relative to a target also moving at constant speed, can be H Mgy = ——5z(7)
8 ¢ (T - ¢)? ‘ (38.8)
:

approximated by i
Integrate both sides of (3B.8) from 7 1o 1

A=—=z2 ‘ ,
2 : d,
vr (3B.1) AME) dE = IFNE de¢
- v (T-¢)y
z2="Tu or ’
where A is the line-of-sight angle to the target
z is the projected miss distance A1) = A(r) = A r 1
V is the velocity of the missile relative to the target T-t T- (3B.9)
T = T — t is the “time-to-go” Thus, from (3B.9), we obtain

u is the acceleration normal to the missile relative velocity vector
. . . . . . 1

1t is assumed that the terminal time T is a known quantity. {The reader should review the dnln =1 @a(8, 7) = u.jl - ! (3B.10)

, -t T—-71 ;

discussion in Prob. 2.6 for the significance of these variables and the derivation of (3B.1).)
Using the state-variable definitions

Combining (3B.10) with (3B.7) gives the state transition matrix

1 1

X = A X, =z ! 1
results in the matrices Pl 7) = 0 Tt | T=r (3B.11)
1
0 - 0
Aln) = vT? B(1) = L (3B.2) .
0 0 3.3 INTERPRETATION AND PROPERTIES OF

THE STATE-TRANSITION MATRIX

Since A{t) is time-varying (through T), the transition matrix is not the matrix exponential
and cannot be found using the series (3.4). In this case, however, we can find the transition

matrix by an ad hoc method. First we note that the transition matsix ®(1, 7} expresses the The state-transition matrix, which is fundamental to the theory of linear

solution to the unforced system axsmamo systems, has a number of important properties which are the subject of
. | this section.
A=—= . as
ek (3B.3) &\n note, first of all, that the state-transition matrix is an expression of the
s (38.4) solution to the homogeneous equation
The general form of this solution is dx(t) —
) a - A0x() (3.23)
A1) = ¢, (4, DA(T) + @51, T)z(7) GB.S)
21} = $ul, TIA(T) + Bt Pz(7) . Mu_aa imv o %wwwﬁ@ (3.20). The time derivative of x(f) in (3.20) must of
urse satis . or any ¢ x(1). initial d:
The terms ¢,(¢, 7) (i, j) = |, 2, which we will now calculate, are the elements of the required J is not a :Eou\wcsnzo ,—.._..:% and x(1). In (3.20) x(r) represents initial data and
transition matrix. - 1
From (3B.4) we have immediately dx(n) ad(s 7)
2(¢) = z{r) = const (3B.6) _ Y x() (324

T
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(Since the transition matrix is a function of two arguments f and m it is
necessary to write its time derivative as a partial derivative. The transition
matrix also has a derivative with respect to the “initial” time t which is investi-
gated in Prob. 3.4.) Substitution of (3.24) and (3.20) into {3.23) gives

adb(t, )

|?|x€ = A(DH®(1, 7)x(7)

Since this must hold for any x(7), we may cancel x{7) on both sides to finally

obtain
ad(t, )
at

= A(DOP(L, 7) (3.25)

In other words, the transition matrix @ satisfies the same differential
equation as the state x. This can be emphasized by writing (3.25) simply as

b= Ad (3.26)

which does not explicitly exhibit the time dependence of A and ®. The dot on
top of ® must be interpreted to designate differentiation with respect to the first
argument. {Because of the possibility of confusion of arguments use of the full
expression (3.25} is recommended in analytical studies.)

We note that (3.20) holds for any ¢ and 7, including ¢ = 7. Thus

x(1) = (4, 1)x(1)

for any x(r). Thus we conclude that
(1, 1)=1 forany ¢ (3.27)

This becomes the initial condition for (3.25) or (3.26).

Other properties of the transition matrix follow from the fact that the
differential equation (3.23) not only possesses a solution for any initial state
x(r) and any time interval [7, {] but that this solution is unique. This is a basic
theorem in the theory of ordinary differential equations and is proved in
standard textbooks on the subject, e.g., [2,3]. There are certain restrictions on
the nature of permissible time variations of A(r) but these are always satisfied
in real-world systems. When A is a constant matrix, of course, not only do we
know that @ exists but we have an expression for it, namely ®(¢) = e,

Assuming the existence and uniqueness of solutions, we can write

x(t;) = ©(45, 1)x(t)) forany 3, 4, (3.28)
and also

x(1;) = @8, t)x(12) forany 13, t> (3.29)

x(tp) = ®(ty, 1,)x(t}) forany 1, {, (3.30)

Thus, substituting (3.30) into (3.29)
x(13) = D(15, )P (8, 1,)x(1)) (3.31)
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Comparing (3.31) with (3.28) we see that

(13, 1)) = D15, ,)D(15, 1) forany 1, t,, 1, (3.32)

M?m very ~Euo.nm.2 vﬁvanz|_3o£: as the semigroup property—of the state-
_.m”._m_:o: matrix is a direct consequence of the fact that whether we go from
state x(¢,) to x(t;) directly or via an “intermediate™ state x(t,), we must end at

the same ﬁo:-ﬁ. wLOﬁQ _._C(<ﬂ<m—. m_—mH :—0 time t, of the —:ﬂﬂ:-On——mnn sta
> s 2
te need

The semigroup properties (3.32) and (3.27) gives

I=®(1, r)P(7, 1)

or

D7, 1) =[D(s, )] foranyt, = (3.33)

This of course means that the state-transition_matrix is never singular even

if the dynamics matrix A is singular,-as_it.often_is..

In a time-invariant s iti iX i
ystem, the transition matrix is characteri i
argument, as already discussed: ved by @ single

O, 1) = D1, — 1)

Thus, for time-invari i
pous, | arlant systems, the properties (3.27), (3.32), and (3.33)

d0) =1 (3.34)
B(ND(7) = Ot + 1) (3.35)
G7l(1) = B(-1) (3.36)

It is readily verified that ®(f) = ¢*' possesses these properties:

e =1 (337
mh_ N)._. — m>:+4u Aw.www
(e?) ! = e (3.39)

NMHM%MM MM_Wm_oa (3.37) is apparent from the series definition (3.4) and the second
antion .38) can be verified by multiplying the series for ' by the series for

. (The calculations are a bit tedious, but the skeptical reader is invited to
perform them.) The third relation (3.39) follows from the first two

B . .
m}ma.« analogy with (3.38) the reader might be tempted to conclude that

= e BM Thig
. s generally not true, however. In order for it to be true A

and B must commute (i = . .
practice. (ie, AB = BA) and this condition is rarely met in
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3.4 SOLUTION BY THE LAPLACE TRANSFORM:
THE RESOLVENT

As the reader is no doubt aware, Laplace transforms are very useful for solving

:Bo-m:E.amm_wﬂmmn_,a::m_ equations. Indeed Laplace transforms are the basis of

: + . . .
the entire frequency-domain methodology, to which the next chapter is devoted.

The Laplace transform of a signal f() which may be an input variable or a
state variable is defined by

LAfD]=1Hs) =] fl)e™dt (3.40)
0
where s is a complex variable generally called complex frequency. A discussion
of the region of convergence of f(s) in the complex s plane, and many other
details about the Laplace transform are to be found in many standard textbooks
such as [1] and [4).

The sans-serif letter f used to designate the Laplace transform of J(t) was
chosen advisedly. In texts in which the signals are all scalars, capital letters are
used to denote Laplace transforms (viz., X(s) = Lix(0)], Y(s) = Ly(n), ete).
But in this book capital letters have been preempted for designating matrices.
The use of sans-serif letters for Laplace transforms avoids the risk of confusion.

The lower limit on the integral has been written as 0. In accordance with
engineering usage, this is understood to be 07, that is, the instant just prior to
the occurrence of discontinuities, impulses, etc., in the signals under
examination. The reader who is unfamiliar with this usage should consult a
standard text such as 1] or [4]. ~

The Laplace transform is useful for solving (3.1)[only when A and B are

|constani matrices| which we will henceforth assume. In ‘order to Uise thie Laplace
transform, we need an expression for the Laplace transform of the time
derivative of f(¢)

o ©

Lf0= H-:mm&nméb: — | —se (1) dt (3.41)

o Q
upon integration by parts. Assuming
lim e *f(£) » 0

100

(3.41) becomes
jy=s | et ai= 10 =515) = 1) (3.42)

We also note that (3.42) applies when f(1) is a vector:
AO] [LAOT] Th)

LAfi=L£ - |=

ol lanm) e

=l =) (3.43)
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and also that
LLAx(1)] = Ax(s) (3.44)
Applying all of these to (3.1) with A and B constant gives
sx(s) — x(0) = Ax(s) + Bu(s)

or

(s — A)x(s) = x(0) + Bu(s)

Solve for x(s) to obtain
x(s) = (sI — A)™'x(0) + (sI — A)"'Bu(s) (3.45)

A.u: taking the inverse Laplace transform of x(s) as given by (3.45) we
obtain the desired solution for x(2). We note that x(s) is the sum of two terms
the first due to the initial condition x(0) multiplied by the matrix (sI — A)™' m:a,
the moo.o:a being the product of this matrix and the term due to the input Bu(s)
Knowing the inverse Laplace transform of (sI — A) ' would permit us to m:m.

p ﬁ _._ n .
ﬁ—-m inverse La —NOW :m.=mmo:= Ow w.&.m- N:Q ence O—uﬁm:. X! In :_m C rca
H v scala 5€

1
s—a

Hle"] = =(s—a)”! (3.46)
We w.z:& :m” yet discussed calculating the Laplace transform of a matrix
function of time. But we should not be very much surprised to learn that

Fle*] = (sI - A)! (3.47)

which m..n. simply the matrix version of (3.46). It can be shown by direct
om_o.:_m:o: (see Note 3.3) that (3.47) is in fact true. And if this be the case then
the inverse Laplace transform of (3.45) is

1
x(1) =e*x(0)+ | e*""MBu(A) di (3.48)
(4]
which is the desired solution. The integral term in (3.48) is given by the
well-known convolution theorem for the Laplace transform [1]

4 o\: —A)g(A) dx | =f(s)g(s)

which is qmw&_« extended from scalar functions to matrices.

The mo_cﬂ._ou for x(¢) E«.\o: by (3.48) is a special case (namely 7 = 0) of the
.mo:n_.m_ mo_:,:o:. (3.16) obtained by another method of analysis. This confirms,
if confirmation is necessary, the validity of (3.47).

. q”__m amvono::m_ matrix e*’ is known as the state transition matrix (for a
time invariant system) and its Laplace transform

D(s) = (s] — A" (3.49)
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is known in mathematical literature as the resolvent of A. In engineering
literature this matrix has been called the characteristic frequency matrix{1] or
simply the characteristic matrix[4] Regrettably there doesn’t appear to be a
standard symbol for the resolvent, which we have designated as ®(s) in this

book.
The fact that the state transition matrix is the inverse Laplace transform of

the resolvent matrix facilitates the calculation of the former. It also character-
izes the dynamic behavior of the system, the subject of the next chapter. The
steps one takes in calculating the state-transition matrix using the resolvent are:

(a) Calculate sI - A,
(b) Obtain the resolvent by inverting (sf — A).
(c¢) Obtain the state-transition matrix by taking the inverse Laplace transform

of the resolvent, element by element.

The following examples illustrate the process.

Example 3C DC motor with inertial load In Chap. 2 (Example 2B} we found that the dynamics
of a de motor driving 2n inertial load are

]

i

w
w = —aw + Bu

The matrices of the state-space characterization are

Thus the resolvent is

1 |

ea.ulAﬁ[}vl_l—“n -1 wu_t 1 _Hw+a _H—H s s(s+a)
$= 1o s+elf Iu:.’.nv 0 s 1

0
s+a

Finally, taking the inverse Laplace transforms of each term in ®(s) we obtain

1 (- m-av\J

0 e

eM = (1) = ﬁ

Example 3D Inverted pendulum The equations of motion of an inverted pendulum were
determined to be (approximately)
0=w
- ©=0%0+u

Hence the matrices of the state-space characterization are

aefa o) oLl

o a1 |_MLFI'H.,. _.E
O(s) = (sT = A) I_M\O.N MH- s2-0L 0% s

The resolvent is
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and the state-transition matrix is

B(1) = e = H cosh 1 m;_::\i

{tsinh 2t cosh (¢

For a general kth-order system the matrix sI — A
—_ T .
appearance s as the following

S~ ap —a), —a
—dan s—a —a

sI— A= 22 2k
TR (3.50)
— g, —dy2 R T

We _,,.wn.m: (see .\:u_uo:&xv that the inverse of any matrix M can be written
as the adjoint matrix, adj M, divided by the determinant |M|. Thus

adj (s — A)

(sI-A)'=
) (sI — A

If we imagine calculating the determinant |
. sI — A] we see that one of the t
will be the product of the diagonal elements of sI — A: s

(s—an)s—ayp)---(s—ay)=s"+cs* ' +.. -+

a polynomial o_,.ammqan k with the leading coefficient of unity. There will also be
other terms coming from the off-diagonal elements of sI — A but none will have
a degree as high as k. Thus we conclude that

whﬁl\w_“.wk._:h_.wwl_x‘v...u*nﬁk Au.m:

. This is known as the characteristic polynomial of the matrix A. It plays a
vital role in the dynamic behavior of the system. The roots of this . ol :o_ﬂm»_
are called Eo characteristic roots, or the eigenvalues, or the poles, o..v:ﬁw system
and anﬁm.:::_m the essential features of the unforced dynamic v.a:mse. wm the
.mvﬁn_.:_ since they determine the inverse Laplace transform of the resolvent. which
is the transition matrix. See Chap. 4. o e

The adjoint of a k by k matrix is itself a k by k matrix whose elements are
the 8@203 of the original matrix. Each cofactor is obtained by computing the
anpamg_:m:ﬁ of the matrix that remains when a row and a column of the original
matrix are .n_m_ﬂwa. It thus follows that each element in adj (sl - A) mm a
Mow_ﬂ.“:_mm_.__h:qw%wmﬁmiiﬁa ammmnn k — L. (The polynomial cannot have degree

colu ~Ai it i
A any xow and o éh“wso sI — A is deleted.) Thus it is seen that the

adj(sI — A) = E;s* '+ E,s* 2+ ...+ E,

Thus we can express the resolvent in the following form

Es*'+...+E,
st as T g,

(sT—A)" = (3.52)
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An interesting and useful relationship for the coefficient matrices E; of
the adjoint matrix can be obtained by multiplying both sides of (3.52) by
|sI — A|(sI ~ A). The result is

|sI — Al = (s — A)(E\s*7" + Eps* 2+ - -+ Ey) (3.53)
or
s*T+a s T+ -+ ad = s*E, + s* '(E, — AE)
+ .-+ s(E, — AE._\) — AE;

Equating the coefficients of s on both sides of (3.53) gives

E =1
E,— AE, = a1
E,— AE, = a1

(3.54)

E— AE,_, = ap\ 1
|>mr = Q_nN

We have thus determined that the leading coefficient matrix of adj (sI — A)
is the identity matrix, and that the subsequent coelficients can be obtained

recursively:

E,= AE + a1
E; = AE, + a1

(3.55)
E.= AE_,+ a1

The last equation in (3.54) is redundant, but can be used as a check, when
the recursion equations (3.55) are used as the basis of a numerical algorithm. In
this case the *check equation” can be written

Epoi = AE + aJ =0 (3.56)
An algorithm based on (3.55) requires the coefficients a; (i=1,..., k) of

the characteristic polynomial. Fortunately, the determination of these
coefficients can be included in the algorithm, for it can be shown that

a; = —tr (AE))
a, = —3tr (AE;)
More generally
nmﬂlwﬁnﬁbmhv i=12,...,k {3.57)
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Figure 3.1 Algorithm for computing

E;s*'4.--+E
s“+as* Tt ta,

(sf —A) "=

An .m_monm::: for computing the numerator matrices E, and the coefficients
a, starting with E;, = ~.. is illustrated in the form of a Aow mrmz in Fig, 3.1
vmmow wwoﬂmw MMVG.MNW is found in many textbooks such as [5, 6]. The &moq.:_zs
pased _umnw o N_”o mu.w_w m__ﬂwmma to :mm\o anmn. discovered several times in
Frame are nften o world. Th :H.Sinm of Leverrier, Souriau, Faddeeva, and

.,_..?m algorithm is convenient for hand calculation and easy to implement on
a digital computer. Unfortunately, however, it is not a very moo%m_ orithm
E:g the order k of the system is large (higher than about _ovv ,:Nm check
m:m:.;" E, which is supposed to be zero, usually turns out to cm embarrass-
ingly large, and hence the resulting coefficients a; and E; are often suspect.

Example 3E Inertial navigation i i i
anpronimated by g The equations for errors in an inertial navigation system are

A Av

.
Il

Ab=—gAp + E, GE.1)

. i
>__wnm>=+m0
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where Ax is the position error, Av is the velocity error, Ay is the tilt o_.ﬂ.:n, platform, g is the
acceleration of gravity, and R is the radius of the carth. (The driving terms are the
uccelerometer error E4 and the gyro error Eg;.)

For the state variables defined by

x, = Ax X, =4v X3 = A

the A matrix is given by

0 i 0
A=]0 0 -g
0 1I/R O©
and, regarding E, and Eg as inputs, the B matrix is
0 0
B=]1 0
o 1

The matrices appesring in the recursive algorithm are

0 | 0 0 t 0
C,=AE,=|0 0 ~g a=-ul =0 E,=Ci+al={0 0 -g
¢ 1I/R O 0o I/R 0
00 -9 25/ R) g/R 0 —g
C,= AE,=|0 -g/R 0 == wx-u E,=Cyta=| 0 0 0
6 o -g/R g 0 o 0
0 0 ¢ 0 ¢ 0O
C,=AE,=|0 0 0 a,=0 E,=C,+aJ=]|0 0 0
' ¢ 0 0 ¢ 0 0
Thus
[s‘+g/R s ~g .
) -1 2 _
(sf—A) ' = Q s Mu NPT
L 0 s/R s
1 1 -g
s s'+g/R s{s*+g/R)
=|o £ s (3E.2)
- s*+g/R s*+g/R
1/R 5
_|o s2+g/R s+ g/R

“The state transition matrix corresponding to the resolvent (3£.2) is obtained by taking its
inverse Laplace transform.

1 sin b/ thomhf - 1)
0 [0
D) =|0 cosQ Imﬁ.&mmab_ 0 =Jg/R (3E3)
Q mmsbn cos {
QR

M
{

v e
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The elements of the state transition matrix, with the exception of ¢, are all oscillatory
with a frequency §} = Vg/ R which is the natural frequency of a pendulum of tength equal 1o
the earth’s radius; Q = 0.001 235 rad/s corresponding to a period T = 27/(} = 84.4 min., which
is known as the “Schuler period.” (See Note 3.4.)

Because the error equations are undamped, the effects of even small instrument biases can
result in substantial navigation errors. Consider, for example, a constant gyro bias

¢
Eg=-

5

The Laplace transform of the position error is given by

Ax(s) = f____ 9 .
x(s) = s;Eh ST (3E4)

and the corresponding position error, as a function of time, is the inverse Laplace transform of
(3E.4)

_
ESu |%A. - gsin EY (E.5)

The position error consists of two terms: a periodic term at the Schuler period and a term which
grows with time (also called a secular rerm at a rate of —(g/£}%) ¢ = ~Re. The position errar
thus grows at a rate proportional 1o the earth’s radius. The position error will grow at a rate of
about 70 m/h for each degree-per-hour “ drift” (Eg = ¢) of the gyro.

3.5 INPUT-OUTPUT RELATIONS:
TRANSFER FUNCTIONS

In conventional (frequency-domain) analysis of system dynamics attention is
focused on the relationship between the output y and the input u. The focus
shifts to the state vector when state space analysis is used, but there is still an
interest in the input-output relation. Usually when an input-output analysis is
made, the initial state x(0) is assumed to be zero. In this case the Laplace
transform of the state is given by

x(5) = (sI — A)™'Bu(s) (3.58)
If the output is defined by
y(1) = Cx(1) (3.59)
Then its Laplace transform is
y(s) = Cx(s) (3.60)
and, by (3.58)
y(s) = C(sI — A)"'Bu(s) (3.61)
The matrix
H(s)= C(sI — A)"'B (3.62)

that relates the Laplace transform of the output to the Laplace transform of the
input is known as the transfer-function matrix.
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The inverse Laplace transform of the transfer-function matrix
H() = £7'[H(s)]= Ce™'B (3.63)

is known as the impulse-response matrix. In the time domain y(f) can be
expressed by the convolution of the impulse-response matrix with the input

t !
y()y=| Ht-DuA)dr=| Ce*“MBu(r)dx (3.64)
[¢] 0
This relationship is equivalent to (3.48) in which the initial state x{(0) is
assumed to be zero, with (3.59) relating y(r) to x(1).
If there is a direct path from the input to the output owing to the presence
of a matrix D

y(1) = Cx(1) + Du(t)
Then
y(5) = Cx(s) + Du(s)
and the transfer-function matrix
H(s)= C(sI— A)'B+ D (3.65)
with the corresponding miwc_wn-qnwvcnmn matrix
H(1)= Ce™B+ D5(1) (3.66)

The delta function (unit impulse) appears in (3.66) because of the direct
connection, through D, from the input to the output. Since the impulse response
of a system is defined as the output y(¢} when the input u(t) = 8(1), it is clear
that the output must contain D5(¢). If the direct connection from the input to
the output is absent, the impulse response does not contain an impulse term,
This implies that the degree of the numerator in H(s) must be lower than the
degree of the denominator. Since the adjoint matrix of sI — A is of the degree
k — 1 (see (3.52)) then the degree of H(s) is no higher than k — 1. Specifically,
with D=0

C[E;s* '+ E;s* 2+ -- -+ EB

Hs) = IsT - Al
k-1 k=24 40 ’
_ CBs _,+ ﬁlmmmw\m_ + CEB (.67)
s +axs et ay

Thus the transfer-function matrix is a rational function of s with the numerator
of degree k — 1 {or less) and the denominator of degree k

Example 3F Missile dynamics Except for difference in size, weight, and speed a missile is
simply a pilotless aircraft. Hence the aerodynamic equations of a missile are the same as those
of an aircraft, namely (2.40) and (2.41).

In many cases the coupling of the change of velacity Au normal to the longitudinal axis
into the equations for angle of attack « and pitch rate g is negligible: Z,, M,, X, are
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V = missile velocity

ay = normal acceleration
¥ a = angle of attack

Y

8

I

flight path angle
= pitch angle

Figure 3.2 Missile dynamic variables.

insignificant. In this case (2.40) gives the following pitch dynamics:

. _Z. Zs
a=—a+tg+—3§
Vv v

IF.1
_u,nzan+?~ca+gom { )

where 8 is the control surface deflection. (The control surface may be located in front of the
missile—in which case it is called a canard—or in the more familiar aft position. Its location
with respect to the center of mass of the missile will determine the signs of the Z; and M,,
used here instead of Z, and M, which were introduced in Chap. 2.)

The pitch angle 8 is usually not of interest, hence the differential equation § = g can be
omitted.

Missile guidance laws are generally expressed in terms of the component of acceleration
normal to the velocity vector of the missile; in proportional navigation, for example, il is
desired that this acceleration be proportional to the inertial line-of-sight rate. (See Example
9G.} Thus the output of interest in a typical missile is the *normal” component of
acceleration ay. In the planar case (see Fig. 3.2)

ay = ~Vy (3F.2)
where y is the flight path angle. But
y=0-a
or
v=q-d (3F.3)
Thus, using (3F.2) and (3F.1),
an = Zya + Zs8 . (3F4)

With the state, input, and output of the missile defined respectively by

o
x = q u=28 y=ay
the matrices of the standard representation X = Ax + Bu, y=Cx+ Du are
LHTQE\ ; g [V
M, M, M;
C=[z, 0] D =[Z;}
A block-diagram representation of the system is shown in Fig. 3.3.




£
@
&
0
o
<
A
(]
o]
=1
]
o
o]
w
o
<
=
(]
z
(&)
2]
o]

FAX 213 7405687

t47

13

01/21/99 THU

78 CONTROL SYSTEM DESIGN

, 2,
M. |
an
% »l
M, e Z,
1
M, v
Figure 3.3 Block-diagram of missile dynamics shawing normal acceleration as output.
The transfer function from the input u = & to the oulput y = ay is given by
H(s) = C(sI - A)"'B+ D
s=ZJV =1 7' zZyv
. it = 0 - + Z,
EAL A B A A
o - ~
_ Zs(s* - My — M)+ Z.M, (F5)
2 N‘ N.H
! 54— __Sa+ﬂ m+ﬂ>§lgn

L iIna typical missile Z,, M,, Z,, and M, are all negative. Thus the coefficient of s? in the
numerator of H(s) in (3F.5) is negative. The constant term Z,M; — M, Z;, on the other hand,
is typically positive. This implies that the numerator of H(s) has a zero in the right half of the
s plane. A transfer function having a right-half plane zero is said to be * nonminimum-phase™
and can be the source of considerable difficulty in design of a well-behaved closed-loop
control system. One can imagine the problem that might arise by observing that the dc gain
—(Z .M, — M_Z,)/ M, is (typically) positive but the high:frequency gain —Z,/M,, is (typi-
cally) negative. So if a control law is designed to provide :rmm:é feedback at dc, unless great
care is exercised in the design, it is liable to produce positive feedback at high frequencies.
Another peculiarity of the transfer function of (3F.5) is that its step response staris out

ay 4

Normal
acceleration

Time

Z, <0

Figure 3.4 Normal acceleration step response (open-loop) of tactical missile showing reversal
in sign.

H
H
H
H
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negative and then turns positive, as shown in Fig. 3.4. The initial value of the step response is

N 1
lim s M H(s)| =23 <0 (typically)

s-c0
but the final value of the step response is
_LMs—-MZ,

_
_.l_._ III,I .
lim s] ~H (s) M, >0 (typically)

Example 3G Dynamics of two-axis gyroscope In Example 2F we used the general theory of
rigid-body dynamics, and made small angle approximatians to develop the equations of
motion for a two-axis gyroscope (*'gyro™):

O, = Wy — Weg

8, =y —wy

) H B K, K, (3G.1)

Oy = =0 ~— (g — W) — 25, ~ Y5+ 2 :
S R bﬁ xa ~ 0xk) Iy 5,

. H B Ko, K, 7

W= ~—wg——(0,p5~ w,g)+—8 ——8, +-*

A A A A A

where 3, and 8, are the angular displacements of the gyro rotar about x and y axes with
respect to the case; w5 and w, g are the components of the inertiat velocity of the rotor projected
onto the x and y axes of the gyro; w,g, o, are the angular velocity components of the gyro
case projected onto the same axes; 7, and 7, are the externally supptied control torques. The
parameters H, Jp, K, Kq are physical parameters of the gyro, as explained in Example 2F.

With respect to the dynamic model of (3G.1), there are two kinds of inputs: control
inputs, represented by the control torques 7, and T,, and exogenous inputs, represented by the
case angular-velocity components o, and w,. These exogenous inputs are not " disturbances”
in the sense of being unwanted; their presence is the raison d'étre for the gyro.

The standard vector matrix form of (3G.1) is thus

X=Ax+ Bu+ Ex,

where
Mr
5, )
X = y "= Te Xo= Wyg
Wyp T, W
Eku
0 0, 1 0
0 0 | 0 1
Am|-—mom oo (3G.2)
~Kplls —KolJy n -B/J, HJ,
xC\.&& INU\&k “ |-I‘\.~L |m\...‘k
0 0 -1 0
0 0 T
B= E =
_ 17J, o B/, 0 (3G3)
o 174, ¢ B/,

The special structure of the lower half of the A matrix is noteworthy: The 2 X 2 submatrix
in the tower right-hand corner is

~B/J; —-H/J Bi1 0 Hio — '
/ /s __E + 8 I (3G.4)
HfJ, -—B/J; J.Lo Ll 0




@020

USC Neuroscience Program

:48 FAX 213 7405687

01/21/99 THU 13

88 CON- SYSTEM DESIGN

The B/J, terms are conventional damping terms (torque proportional to angular velocity)
which tend to dissipate the initial energy of the gyro. The H/J, terms (which appear in a skew
symmetric matrix) have an entirely different effect: They do not cause the energy of the gyro
to dissipate but rather produce a high-frequency oscillation called *nutation,” a phenomenon
present in all gyros, to be discussed at greater length later.

The 2 x 2 submatrix in the lower left-hand corner of the A matrix is also of interest. This
matrix is

-Kpl/dy —KolJ Kp|1 0O Ko{o —i

of Ju of el _ _Ep + =9 (3G.5)
Kofda  —Kplda Jy Lo 1 J, L 0

The Kp/J; terms are conventional spring terms. In a gyro they give rise to a low-

frequency osciliatory motion known as *' precession.”
We can evince these phenomena by studying the characteristic equation of the gyro:

s 0 -l 0
1
0 0 -1
T =0 (3G.6)
¢ 0 " s+ b b,
=6 ol -b, stb
where b, =B/1; b,=H/IJ,

e, = Kp/ds e = Kol s
The determinant appearing in {3G.6) can be evaluated in a variety of ways—some simpler
than others. The result is
[sf = Al = (24 bys + )2+ (bys + ) =0 (3G.7)
or
(524 bys + €)= —(bys + &)’
Thus the eigenvalues are the roots of
2+ bys+ e, = £j(bys +65)
or
2+ (b Fjb)s+c, Fjo=0 (3G.8)
The eigenvalues of the system are thus the four roots of (3G.8)
ooy T o) (b T ) ~ ey 7 )
2

(3G.9)

fn an ideal gyro the “spring™ coeflicients ¢, and ¢, are zero; they are not zero in some
types of real gyros, but in any case they are very small; i.e.,
e, + jeol < by + jbol* (3G.10)

Taking note of this, we write the radical in (3G9} as

_ 4(e, F jeo)
(b, F jb)Y

(3G.11)

by F jby) — Ale, F jes) = (b F ) f ]
Using the approximation:
(1+e)?=1+% fore<l

we obtain for (3G.11)
2c, ¥ jey)
b, ¥ jby

(by nmx&tw — (e, F je) = b F jby -
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Now

by Fjb, b, Fjb, b+ jba B+ b3

G Fje o Fjo bt jby (b, + b)) F jlbye, - byey)

Hence, by (3(5.9), the approximate poles are given by

bye, + bty bye; — bye
s=—p, 2T 0202 hCy 1€2
e A\t T GG.12)
and
biey + byey b.e, - b ¢
B Y S U B ot
*j (3G.13)

b+ b2 bl + bl

On the complex plane, the four eigenvalues are positioned as shown in Fig. 3.5. Two

m P atl 1
cigenvalues are located relatively close to the origin at a natural frequency

bie, - by

@y = bl + b2 (3G.14)

which is known as the precession frequency. The pole stable with a (negative) real part

o = IFH._ + byes
P T (3G.15)
b
Nutation
X Fwn = w, + by
Precession
X | @p
1
— >
a, -a,
X T —w,
@y, =a, — ?"
wy=w, + b,
X TWn -
Figure 3.5 Pales of two-uxis gyroscope.
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The other two poles ure located much farther from the origin, at a natural frequency
w, = vm + w,

which is known as the “nutation™ frequency. This pole is also stable with a (negative) real
part of

a, =~b +a, (3G.16)
The precession poles are due to the presence of the spring terms ¢, and ¢,. In an ideal

gyro in which these terms are absent, the precession poles move to the origin and the nutation
terms become

1]

w,=b,=H/I,

—b = B/J,

(3G.17)

I

QR

With the precession terms present, the nutation frequency changes rom H/J; by the
amount of the precession frequency, and the damping is decreased.
The outputs of the gyro are the signal measured at the pick-off angles. Thus the output
equations are
y=18
y.=8,
or, in vector-matrix notation
y=0Cx
with
1 00 0 .
C=
01 00

The transfer-function matrix from the external inputs w, and w, to the observed outputs
8, and &, is
H,(s} = C(s] - A)T'E (3G.18)
and the transfer-function matrix from the control inputs 7, and 7, to the output is
H{s)=C(sI —A)'B (3G.19}
On evaluating (3G.18) we find the matrix of transfer functions for the free (uncontrolled)
gyro
S2Hbste  ~bs—g
bys+ec, sP+bs+e
(s + byis+e¢)—(bys+e,)

H {s) =

For inertial navigation purposes, an ideal gyro is ane in which all the parameters are zero
with the exception of b, = H/J. In this ideal case
s =byy
Ho(s) bys  s?
s)="—" 55—
! 2%+ b2)

For a step input of angular velocity, say
Qls)=1/s Qs)=0
the Laplace transforms of the outputs are

1 _ 11 s
s(s* + b2) vw s m~+~uw

As)=
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P t

s3(s?+ b2) b\s® 5P+ b3

and the corresponding time functions are

A (s)=~

t
8.(1) = (1 —cos byt)
WN

8,(1) = |9P~ H 1%1: bat

as shown in Fig. 3.6. The output angle 8, for an angular velocity input about the x axis is a
sinusoid .e-. amplitude 1762 with a dc value of 1/b3. The cross-axis output, however, oscillates
about a line having a stope of 1/b,. Thus, a constant angular velocity input produces an output
in the cross axis with a constantly increasing mean value. Because of this output, an ideal gyro
is also called a rate-integrating gyro, since its long-term outputs (the pick-off angles 8,, 5.} are
proportional to the integrals of the angular velocity components about the no:nw_uosn,m:mwaaum
axes. (Note that the constant of proportionality for one input-output pair has the same numerical
magnitude as that of the other input-output pair, but is of opposite sign.}

w.::un the pick-off angles (i.e., the angular displacements of the wheel plane} cannot be
_mqwn in a typical gyro, a rate-integrating gyro is not suitable for applications in which the
.smnmn»_m of the body rates (i.c., the displacement of the gyro case relative 10 the rotor, whose
axis tends to remain stationary in space) are appreciable. Since the motion of the on.5 {air,
sea, or space) which carries the gyro cannot be confined to such small angles, the gyros mzw

8.(1)

—>
Time

~ Slope = 1/b,

Figure 3.6 Outputs on two axes of gyro for constant angular velocity on x-axis.
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typically mounted on a stable platform which is connected to the carrying cralt by meuns of a
set of gimbals that permit the stable platform to maintain a fixed orientation in space while the
carrying craft undergoes arbitrary motion. Any tendency of the stable platform to rotute in
space is immediately sensed by the gyro pick-offs and the output signals are used to penerate
feedback signals that drive gimbal torquers which move the gimbals to maintain the pick-off
angles very close to null.

3.6 TRANSFORMATION OF STATE VARIABLES

It frequently happens that the state variables used in the original formulation of
the dynamics of a system are not as convenient as another set of state variables.
Instead of having to reformulate the system dynamics, it is possible 1o transform
the matrices A, B, C, and D of the original formulation to a new set of matrices

A, B, C, and D. The change of variables is represented by a linear transfor-

mation
7= Tx ‘ (3.68)

where z is the state vector in the new formulation and x is the state vector in the
original formulation. It is assumed that the transformation matrix T is a
nonsingular k by k matrix, so that we can always write

x=T"z (3.69)

We assume, moreover, that T is a constant matrix. (This assumption is not
necessary, however, but the formulas to be derived below will require modifica-
tion to include T, if T is not constant.)

The original dynamics are expressed by

X = Ax + Bu
and the output by
y=Cx+ Du
Substitution of x as given by (3.69) into these equations gives

T'4=AT 'z+ Bu

or
i=TAT 'z TBu (3.70)
y=CT "'z+ Du (3.71)

These are in the normal form
7= Az + Bu (3.72)
y=Cz+ Du (3.73)

with

A=TAT' B=TB C=CT"' D=D (3.74)

DYNAMICS OF L .R SYSTEMS §5§

In the language of matrix algebra, the dynamics matrix of the transformed
system A = TAT ' is said to be similar to the dynamics matrix A of the original
system. A well-known fact of matrix algebra is that similar matrices have the
same characteristic palynomial. If we didn’t already know this we could show
it using the argument that the input-output relations for the system, i.e.,
the transfer function from the input to the output, should not depend on
how the state variables are defined. Using the original state variables, we found
in the previous section that the transfer function is given by

CBs*"'+ CE,Bs**+ ...+ CE,B
sS+as* -+ g,

H(s) = + D (3.75)

Using the new state variables, the transfer function is given by

ARk-l 4 AP Fok-2 SE R
) = o LR (376)
where

s“tast 4+ a = sl - A
and
adj(sI ~ A) = "' + Es* 2+ ... + E,

In order for the two transfer functions given by (3.75) and (3.76) to be equal,
we need D = D, which we have already determined, and we also must have

CB=CB (3.1
CEB=CEB i=12,...,k (3.78)
a=a i=1,2,...,k (3.79)

Using H.u.ﬂ: CB = CT"'TB = CB, so (3.77) is satisfied. The condition that
a = d; is a verification of the condition that the characteristic polynomials of
similar matrices are equal. Finally, we must verify that (3.78) is satisfied. This is

done with the aid of (3.56). For the original system, (3.56) gives

CE,.,B = CAE,B + a,CB (3.80)
and, from (3.74) C = CT and B = T~'B. Thus (3.80) becomes
CTE . ,«T'B=CTA(T'T)ET 'B + 4,CB (3.81)

Note that T™'T = I has been inserted and that (3.79) and (3.77) have been
used. It is thus seen that (3.81) reduces to

CE...B=CAEB+ aCB
which will satisfy (3.78) provided that
E = TET™

which means that each coefficient matrix E, of the adjoint matrix of A
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transforms from the corresponding coefficient matrix E; of the original matrix

A, in the same way as A transforms from A4, i.e.,
A= TAT™
as given by (3.74). This is another fact of matrix algebra, which has been

verified by the requirement that transfer functions between the input and the
output must not depend on the definition of the state vector.

Example 3H Spring-coupled masses The equations of motion of a pair of masses M, and M,
coupled by a spring, and sliding in one dimension in the absence of friclion (see Fig. 3.7(a)) are

. K u

XA e =Xy = -

>\ﬂ_ >ﬂ_
(31£.1)

N K u;

Xt - —x) =

M, M,

where u; and u, are the externally applied forces and K is the spring constant. Defining the

state
=[x, xx X %I

X2

X1

(b}

Figure 3.7 Dynamics of spring-coupled masses. (a) System configuration; (b) Block diagram.
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results in the following matrices

0 0 1 0 0 0

Al o 0 01 sl 0 0
-K/M, K/M, 0 0 “lusm, o (3H2)

K/M; —-K/M, 0 0 o 1/M,

It might be more convenient, howev. i
y er, to define the motion of the system by th i
of the center-of-mass g Y e mofon

MM
YR |>Mx~ (M = M, + M;) (3H.3)
and the difference
8=x —x, (3H4)
between the positions of the two masses. We let
z=[% 8 % 5]
From (3H.3)} and {3H.4)
LM, M, |
TR
§=2% -3
Thus we have
x M/M My/M 0 0 x
8 _ [ —1 0 0 X3 3HS
# 0 0 M/M Mym|| % G
3 ] 0 1 -1 %,
T

“;M 4 by 4 matrix in {(3H.5) is the transformation matrix T, the inverse of which is easily found
o be

I M/M 0 0

|t Mmoo o
0 0 1 MyM .
0o 0 1 MM
Thus we find
0 0t 0 0 0
R oo o i
A=TAT '= B=TB= 0 0
000 0 /M M S
00 0 —KM/M,M, ~1/M, =1/ M,
The differential equations corresponding to A and B are
$= U+ 1,
M
{IH.8)
e KM st

“m:w case, these equations could readily have been obtained directly from the original equations
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3.7 STATE-SPACE REPRESENTATION OF
TRANSFER FUNCTIONS: CANONICAL FORMS

In Sec. 3.5 we learned how to determine the transfer function of a linear,
time-invariant system, given the state-space representation. Sometimes it is
necessary to go in the other direction: from the transfer-function to the
state-space representation. This need may arise because the only available
description of a subsystem within a larger system is the transfer function of that
subsystem. In order to use state-space methods, the transfer function must be
turned into a set of first-order differential equations. Another reason for
converting a transfer-function representation into a state-space representation is
for the purpose of transient response simulation. Many algorithms and numeri-
cal integration computer programs designed for solution of systems of first-
order equations are available, but there is not much software for numerical
inversion of Laplace transforms. Thus, if a reliable method is needed for
calculating the transient response of a system, one may be better off converting
the transfer function of the system to state-space form and numerically inte-
grating the resulting differential equations rather than attempting to compute the
inverse Laplace transform by numerical methods.

In the last section we saw that there are innumerable systems that have the
same transfer function. Hence the representation of a transfer function in
state-space form is obviously not unique. In this section we shall develop
several standard, or “‘canonical” representations of transfer functions that can
always be used for single-input, multiple-output or multiple-input, single-output
systems. One canonical representation has no general advantage over any other,
and, moreover, there is no reason why a canonical representation is to be
preferred over a noncanonical representation.

First companion form The development starts with a transfer function of a
single-input, single-output system of the form
y{s) !

H = — = 3.
(s) u(s)  s*+ast '+ +a (3.82)

which can be written
(s* +as* "+ -+ a)y(s) = u(s) (3.83)
The differential equation corresponding to (3.83) is
DY +a,D*'y+ - +ay=u (3.84)
where D*y stands for d*y/dt*. Solve for the highest derivative in (3.84)
DYy = —a,D* 'y —a,D* Py — - —ay+u (3.83)

Now consider a chain of k integrators as shown in Fig. 3.8(a), and suppose that
the output of the last integrator is y. Then the output of the next-to-last
integrator is Dy = dy/dt, and so forth. The output from the first integrator is

i
»
‘

o
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a az 1 ax

{a)

ay az /7N ag

(b)
Figure 3.8 State-space realization of transfer functions in first companion form

I bys* +byst T+t b
Frasr e O He =TT :
s"tast T F gy sTtayst T ety

{a) H{s) =

D*"'y and the input to this integrator is thus D*y. From (3.85) it follows that
Fig. 3.8(a) represents the given transfer function (3.82) provided that the

_feedback gains are chosen as shown in the figure. To get one state-space

representation of the system, we identify the output of each integrator with a
state variable, starting at the right and proceeding to the left. The corresponding
differential equations using this identification of state variables are

X, = X3

Xy = Xy

e e e . (3.86)
Xyt = X

Xp = =Xy — @ (Xy— -~ )X+ u
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The output equation is simply

y=x (3.87)
The matrices corresponding to (3.86) and (3.87) are
0 1 0 e 0 0
0 0 i O ¢ 0
e Ceee B= (3.88)
0 0 0 -1 0
—Qp T4y Ok oy 1

C=[1 0 0 -+ 0]

The matrix A has a very special structure: the coefficients of the
denominator of the transfer function, preceded by minus signs, are strung out
along the bottom row of the matrix. The rest of the matrix is zero except for the
“superdiagonal " terms which are all unity. In matrix theory, a matrix with this
structure is said to be in companion form. For this reason we identifly this
state-space realization of the transfer {unction as a companion-form realization.
We call this the first companion form; another companion form will be discussed
later on.

If the state variables were numbered from right to left we would have

X=—aX) = @aXs — T At u
X; = Xy
(3.89)
Xp—1 = Xp-z
X = Xpo)
and
Y= X

The corresponding matrices would be

—-a, —@; -~ 1

1 0o - 0 0 0
A=| 0 T - 0 0 B=|0

o o .- 1 0 0
c=[0 0 --- 0 1]

This representation is also cailed a companion form, but is less frequently
used than the form (3.88). There is nothing sacred about numbering the
integrators systematically from right to left or from left to right. A perfectly

K
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valid, if perverse, representation would result if the integrators were numbered
at random.

Having developed a state-space representation of the simple transfer func-
tion (3.82), we are now in a position to consider the more general transfer
function

y(s) Bos*+bs* M4+ by

H(s)="—=%= .
(s) u(s)  st+ast'+ota (3.91)

The development is aided by the introduction of an intermediate variable z2(s)

y(s) _y(s) z(s) bos* +bis“ T4 4 by

u(s) z(s) :T,vl s*+ast Tt

We identify the first factor with the numerator and the second factor with the
denominator:

MM“W =bos“ + bys* T+ by (392)
and
z(s) 1 (3.93)

u(s)  sftastHta

The realization of the transfer function from u to z has already been
developed. And, from (3.92)

yi(s) = (bes® + bys* '+ o+ by)z(s)
1e.,
y=byD¥z+ b D* 'z -+ bz

The inputs to the integrators in the chain are the k successive derivatives of z as
shown in Fig. 3.8(b), hence we have the required state-space representation. All
that remains to be done is to write the corresponding differential equations. The
state equations are the same as (3.86) or (3.89) and hence the A and B matrices
are the same. The output equation is found by careful examination of the
block diagram of Fig. 3.8(b). Note that there are two paths from the output of
each integrator to the system output: one path upward through the box labeled
b, and a second path down through the box labeled 4; and thence through the
box labeled b,. As a consequence, when the right-to-left state variable numbering
is used
y = (b, — abo)x, + (by_y — ap_ 1 bo)xa + - - - + (b, — a,bg)x; + bou

Hence

C =[be — ayby, by — @ 1bo, - -, by — a1bol, D =[b] (3.94)

If the direct path through b, is absent, then the D matrix is zero and the C
matrix contains only the b; coefficients.
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If lefi-to-right numbering is used, then

C =[by = a\bo, by — ashy, ..., by — b)), D =[h] (3.95)

The structure of the first canonical form is very easy to remember (*auto-
mnemonic’’). The string of integrators can be visualized as the fraction bar of the
transfer function (3.91) that is realized. The numerator coefficients appear above
the chain of integrators in the same order as they appear above the fraction bar
in {3.91) and the denominator coefficients appear below the chain of integrators
in the same order as they appear below the (raction bar in (3.91). Not too much
imagination is needed to “'see” the transfer function (3.91) in Fig. 3.8.

A generalized version of the first companion form can be used to realize a
single input, multiple output system represented by / transfer functions, one
from the single input to each of the ! different outputs

y,(s) _ &n:u.r + v__.,,» T+ by

u(s) sSftast 4+ g,

vi(s) _ bus® +bys T+ + by
uls) sf+ast et a

The same set of state variables serves for each transfer function. Each
numerator, however, is realized by a difterent set of gains, as shown in Fig. 3.9.
Thus the A and B matrices are exactly as given earlier. From Fig. 3.9 it is also
seen that the € and D matrices are

by, — agby, by —akaby - by —aby, by,
C=|----- P e e e e D=
b — axbo; by iy = ag by < b — a by bar
(3.96)
for the right-to-left numbering, or
by —abyy by —axby v by - arhy b,
O v v en et e D=1{": (3.97)
by—aby by—aby -+ by— aby by

for the left-to-right numbering.

In the first canonical form realizations of Figs. 3.1 through 3.9 the input is
connected directly to the first integrator in the chain and the output is a linear
combination of the outputs of the integrators (and the input, when the D matrix
is nonzero). This form is useful not only for single-input, single-output systems,
but also, as we have seen, for single-input, multiple-output systems. A variant of
the structure of Fig. 3.8, in which the output is taken directly from the last
integrator but the input is connected to all the integrators, is shown in Fig. 3.10.
A realization of a multiple-input, single-output system based on the structure of
Fig. 3.10 is shown in Fig. 3.11.
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» by,
|J by
L_\:._._
> &h_
| | |
| | {
_ _ !
> ¥
» by »
¥ by »
: I
b, ., »

Figure 3.9 Realization of single-input, multiple-output system in first companion form.

The “feedforward™ gains py, p,, ..., pi in Fig. 3.10 are in general not equal
to the coefficients by, by, . .., b, of the transfer function but must be obtained by
solution of a set of linear algebraic equations which may be derived as follows.
From Fig. 3.10 it is easy to see that

Xy =x;tpu

&MHMH+F:
(3.98)
Xioy = X + progu

X = =@\ X~ - — Xt pu
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P Po
¥
—— —p
X3 X
a;_ a;
Figure 3.10 Alternative first companion form of realization of transfer {unction
" v\ucmr+?.¢.»._+..,+?
tsy = SfStastTt 4
and
y=x 1 pu (3.99)
Differentiate (3.99) k times and use (3.98) to obtain
Dy = x,+ pyu + poDu
D*y = x5+ p,u + p,Du + p,D*u
.................... et (3.100)
D*'y = x4 peoyu+ pyDu+ -+ p D 2u+ p,D* '
UJ\ =—a\ X — QX — X, paue+ o Dut -
+ p,D¥'u + pyD*u
From (3.100) and (3.99) we thus get
DYy +a,D* 'y + -+ -+ a_ Dy + ay
={petapt+ ta_pt+ ap)u
+ (Pt ae,p + aey po) Du
+o+ (p+ap) D
poD*ue (3.101)

In order for (3.101) to represent the differential equation corresponding to the
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» P

Figure 3.11 Use of alternative first companion form for realizing multiple-input single-output
transfer function.

transfer function (3.91) it is necessary that

o= bo
pitapy=b
............... G.:ﬁv
Peattacspitacpe=b
ot ta o pytagp, = b
which constitute a set of k + [ simultaneous equations for p,, py, ..., p,. These
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may be arranged in vector-matrix form

1 0 -0 o by

a, 1 -0 4 b,
e sl = (3.103)
P P O N B by,

ax By o1 P by

The triangular matrix that appears in (3.103), the first column of which is
formed from the coefficients of the characteristic polynomial, and whose
subsequent columns are obtained by pushing down the previous column one
position, is a special form of a Toeplitz matrix, and occurs elsewhere in linear
system theory. We shall encounter it again in Chap. 6 in connection with control
system design by pole placement. The determinant of this matrix is 1, so it is
nonsingular. Hence it is always possible to solve for the p; given the numerator
coefficients b, (i =1,2,..., k).

It is worth noting that although the state variables in the original first
canonical form and in the alternate canonical form are identified with the
outputs of the integrators, they are not the same variables: (3.86) and (3.87) are
not the same as (3.98) and (3.99). Although the A matrix of both systems are the
same, the B and C matrices are not. The reader might wish to test the
comprehension of state-variable transformations, as discussed in the previous
section, by finding the transformation matrix T that transforms (3.86) and
(3.87) into (3.98) and (3.99}. Note that this matrix must satisfy

TAT '=A or TA = AT

Thus T commutes with A.

The generalization of Fig. 3.10 for multiple-input, single-output systems is
shown in Fig. 3.11. The set of coefficients py, pis ..., p; for the ith input is
found from the corresponding coefficients by, b, . . ., by; by use of (3.103).

By use of the structure shown in Fig. 3.9 we can realize a single-input,
multiple-output system in state-variable form. Similarly, a single-output,
multiple-input system can be realized with the structure of Fig. 3.11. One might
think that a multiple-input, multiple-output system can be realized with only k
integrators using a combination of Figs. 3.9 and 3.11. A bit of reflection,
however, will soon convince one that in general this is not possible. It is
obvious, however, that one way of realizing a muitiple-input, multiple-output
system is by using a number of structures of the form of Fig. 3.9 or Fig. 3.11 in
parallel. If the number I of outputs is smaller than the number m of inputs, then
1 structures of Fig. 3.11 are used in parallel; if the number of outputs is greater
than the number of inputs then m structures of the form of Fig. 3.9 are used.
Hence it is always possible to realize an m-input, l-output system with no more
than k-min(}, m) integrators. But there is no assurance that there is not a
realization that requires still fewer integrators. The determination of a
“minimum” realization was the subject of considerable research during the
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1970s. There are now several algorithms for finding a minimum realization and
the matrices A, B, C, and D that result. {See Note 3.5 for a more complete
discussion of this subject.)

Second companion form In the first companion form, the coefficients of the
denominator of the transfer function appear in one of the rows of the A matrix.
There is another set of companion forms in which the coefficients appear in a
column of the A matrix. For a single-input, single-output system, this form can
be obtained by writing (3.91) as

(s* + a;s* 7+ -+ g )y(s) = (bos* + bis" '+ - + b u(s)
or
s* [y(s) = bou(s)]1+ s* '[ay(s) = byu(s)]+ - - - +[awy(s) — byu(s)] =0

On dividing by s* and solving for y(s), we obtain
1 |
y(s) = byu(s) +w?_c_?v —ay(s)]+--- +ﬂ?r£.& - ay(s)} (3.104)

Noting that the multiplier 1/s’ is the transfer function of a chain of j
integrators, immediately leads to the structure shown in Fig. 3.12. The signal y
is fed back to each of the integrators in the chain and the signal u is fed
forward. Thus the signal b.u — a,y passes through k integrators, as required by
(3.104), the signal b, _ 1 — a,_,y passes through k — | integrators, and so forth
to complete the realization of (3.104). The structure retains the ladder-like
shape of the first companion form, but the feedback paths are in different
directions.

! ! S

by byt by by by

®

a; Uy ag -2 a

Figure 3.12 State-space realization of transfer function

bos* 4 bys¥ T 4t b,
s*ta st g

H(s) =

in second companian form.
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Using the right-to-left numbering of state variables, the differential
equations corresponding to Fig. 3.12 are

X
il

X, —a{x, + bou) + bu

X, = X3 — a{(x; + bou) + byu

(3.105)
Xp_y =X — @ (x; + bout) + by _u
X = —ap(xy + bou) + bu
and the output equation is
y =X + byu
Thus the matrices that describe the state-space realization are given by
-a 1 0 :-- 0 b, — a by
-a;, 0 t --- 0 b, ~ a,b,
I B = :
: (3.106)
-, 0 0 --- 0 by — a,_ by
-4 0 0 --- Q b, — awb,
C=[ 00 - 0] D ={[by]

If the right-to-left numbering convention is employed, then instead of
{3.106) we obtain

0 0 - -
U Ur - hw@c
1 0 - —ay_, b — b
A=l0 1 - —a_, B=| T et (3.107)
0 0 --- ~a, b, ~ a b
c={0 0 --- 1] D =1by]

Compare the matrices A, B, C, and D with the matrices of the first
companion form and observe that the A matrix of one companion form
corresponds to the transpose of an A matrix of the other, and that the B and C
matrices of one correspond to the transposes of the C and B matrices,
respectively of the other.

The state space realization of Fig. 3.12 for a single-input, single-output
system can readily be generalized to a multiple-input, multiple-output system;
the upper part of the block diagram representing the realization would have the
same general form as the upper part of Fig. 3.11, with one path from every input
to the summer in front of each integrator. The gains are obtained from the
elements of the B matrix,

s oy PR
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qt Qo

ax ax-) i3

1 ] i

g

¢*—m

Figure 3.13 Alternate second companion form realization of transfer function.

Just as there are two versions of the first companion form, there are two
versions of the second companion form. The second version has the structure
shown in Fig. 3.13. The reader by now can probably guess the relationships
between the gains q,,..., g and the coefficients of the numerator of the
transfer function. (See Probiem 3.5.) It is also noted that the structure of Fig.
3.13 can be generalized to the realization of a single-input, multiple-output
system.

Jordan Form: Partial Fraction Expansion

Another of the canonical forms of the realization of a transfer function is the
Jordan form, so named because of the nature of the A matrix that results. This
canonical form follows directly from the partial fraction expansion of the
transfer functions.

The results are simplest when the poles of the transfer function are all
different—no repeatcd poles. The partial fraction expansion of the transfer
function then has the form

H(s) = bg+ —— b —2— oo & (3.108)
§—=85 S§—5 5 — 5

The coefficients r; (i =1,2,...,k) are the residues of the reduced transfer
function H(s) — b, at the corresponding poles. In the form of (3.108) the
transfer function consists of a direct path with gain by, and k first-order transfer
functions in parallel. A block diagram representation of (3.108) is shown in Fig.
3.14. The gains corresponding to the residues have been placed at the outputs of
the integrators. This is quite arbitrary. They could have been located on the
input sides, or indeed split between the ipput and the output.
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Figure 3.14 Complex Jordan form of transfer function with distinct roots.

. . ! . .. in
Identifying the outputs of mro integrators with the state variables results
the following differential equations:

and an observation equation

y=nxtnxt- -+ ey + byt

Xy=sx,tu

Xy = 83Xt

H.r = .mr..xkn—n:

(3.109)

(3.110)
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Hence the matrices corresponding to this realization are

55 0 -+ 0 1
0 s - 0 |
}” R I R Y w“ .
0 0 - & 1
C=[r rnn - rl D =[b,]

Note that A is a diagonal matrix, which in matrix theory is the Jordan form of
a matrix having nonrepeated eigenvalues.

The block-diagram representation of Fig. 3.14 can be turned into hardware
only if all the poles sy, 5,,..., 5¢ are real. If they are complex, the feedback
gains and the gains corresponding to the residues are complex. In this case
the representation must be considered as being purely conceptual: valid for
theoretical studies, but not physically realizable. If a physically realizable
representation is desired, it is possible to combine a pair of complex poles and
residues into a single second-order transfer function with real coefficients. The
resulting second-order transfer function of the subsystem is then realized in one
of the companion forms. Suppose, for example, that s, and s, are a complex
conjugate pair. For a transfer function having real coefficients (as it must in a
real system), the residues at a pair of complex conjugate poles must be
themselves complex conjugates. Thus a pair of complex conjugate poles, say
sy =—o+jw and s, = —o — jw with corresponding residues r = A + jy and
r; = A — jy give rise to the sum

= A+ jy 4 A—jy  2As+ (do — wy)]

12 sto-—jo s+totju sS+2os+ 07+’
This is a second-order transfer function having the companion-form realization
shown in Fig. 3.15. This will give rise to a second-order system in state-space
form

i 0 1 X 0
%, —(e*+ o) —20]l% |
(3.111)

Pia=[20Ac —wy) 22]| "

X2

A second-order subsystem such as (3.111) can be used to represent every
complex conjugate pair of terms in the partial {raction expansion.

When the system has repeated roots, the partial fraction expansion of the
transfer function H(s) will not be as simple as (3.109). Instead it will be of the
form

H(s) = b+ H\ (s} + - -+ + He(s) (3.112)
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Figure 3.15 Companion-form realization of pair of complex conjugate terms as a real second-order
subsystem.

where k < k is the number of distinct poles of H(s) and where

Tt + T2 +...+[.p_.|

55 :Im..vm (s —s)"

Hi(s) =

where ¥, is the multiplicity of the ith pole (i =1,2,..., k). The last term in
Hi(s) can be synthesized as a chain of », identical, first-order systems, each
having transfer function 1/(s ~ s,). The preceding terms in the chain of fewer
than »; of such transfer functions. Thus the entire transfer function H:{s) can be
synthesized by the system having the block diagram in Fig. 3.16.

Using the right-to-left numbering convention gives the differential equations

X =sx; tu

X = X1 + 5%y (3.113)

Xpi = Xy—1)i T 5%,
and the output is given by

Yi = kg byt (3.114)
If the state vector for the subsystem is defined by

i — ... i
=[x, .
X =[xy xy X
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V>| . \.v..
Fii ry Foi
i
_ _ p——— ]
X1 Xy Xyi
5, S e 5, fed

Figure 3.16 Jordan-block realization of part of transfer function having repeated pole

Ty T,
it o
s—s; (s —s)%

Hi(s) =

then (3.113) and (3.114) can be written in the standard form

3= Ax'+ bu
. ) (3.115)
.v.__ — Q._..N_
where
ss 0 0 -+ 0 1
I & 0 -+ 0 0
\9. = 0 1 5 P 0 mwn. =| 0
R e : (3.116)
0 0 0 --- 0

<

C=[ri ry roil

Note that the A matrix of the subsystem consists of two diagonals: the
principal diagonal has the corresponding characteristic root (pale) and the
subdiagonal has all I's. In matrix theory a matrix having this structure is said to
be in Jordan form, which is the name used for this realization of the transfer
function.

If the right-to-left numbering convention were employed it is easy to see
that the A matrix would have 1's on the superdiagonal instead of on the
subdiagonal. This is an alternate Jordan form.

According to (3.112) the overall transfer function consists of a direct path
Wwith gain b, and k subsystems, each of which is in the Jordan canonical form,
as shown in Fig. 3.17. The state vector of the overall system consists of the
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»> i, Figure 3.17 Subsystems in Jordan
. canonical form combined into overall
) system.

concatenation of the state vectors of each of the Jordan blocks

(3.117)

Since there is no feedback from any of the subsystems to the others, the A
matrix of the overall system is *“block diagonal™':

A 0 - 0
A= (3.118)

where each of the submatrices is in the Jordan canonical form shown in (3.116).

The B and C matrices of the overall system are the concatenations of the B;

and C; matrices of each of the subsystems:

B=| . C=[C,...,C] (3.119)

DYNAMICS OF LI, & SYSTEMS 105

It is noted that the Jordan blocks are only conceptual if the poles are
complex. Pairs of Jordan blocks can be combined to give a real Jordan block of
order 2z, The details are easy to work out, but the general notation and
calculations are quite messy. If the need ever arises (which is highly unlikely)
for such a real Jordan block, the procedures used in this section can be followed
to obtain the required result.

. To conclude this discussion it is noted that the Jordan normal form can be
extended directly to either a multiple-input, single-output system, or a multiple-
output, single-input system. In the former case, each input has a path to each of
the integrators; in the latter, each integrator has a path to each of the outputs.

Example 31. Spring-coupled masses (continued) It is readily established, either by use of the
general relationship (3.65) applied to (3H.2), or by simpler means, that the input-output
relationship for the spring-coupled mass system is given by

s+ K/M, K/M,
ﬁ _EM_ | s+ ki 2GR+ kA0 T_:g o
ya(s) K/ M, 57+ K/ M, us(s) ’
ssP+ K/M) 53 (s*+ K/ M)
where

| 1 1

— =—+ —

M M, M,

The block diagram of Fig. 3.7 already gives a state-vuriable realization of the system. For
illustrative purposes, however, we assume that u, =0, and hence we have a singte-input,
two-output system. The transfer functions of interest are
vils) P+ K/M,
us) $(s*+ K/M)
ya(s) _ K/M,
uls)  s¥sP+ K/ M)

H(s) =

(31.2)

Ha(s) =

The first companion form, using the structure of Fig. 3.9 for a single-input, multiple-

output, system is obtained directly from (31.2) and is shown in Fig. 3.18(a). The corresponding
malrices are

01 ¢ 0 0
00 1 0 0

= .m =
A 00 0 1 0

00 -K/M 0 _ @31y

,o
QNT\E- _ J Uno
K/M, 0 0 0

Although the structure and gains for the single-input, multiple-output version of the
second companion form were not given explicitly, it is readily established that the block
diagram of Fig. 3.18(b) correct|y represents the transfer functions from u, 10 y, and y,. The
relevant matrices are

0 1 00 0
-K/M 0 1 0 0
A=l o o0 0 B=1s

0 00 0 1 (14)
0

. ﬁw.:x_ _o cr
=L o k/M 0 0 =0
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(a)

(c)

Figure 3.18 Canonical realizations of transfer functions of spring-coupled mass system. {a} First
companion form, (&) second companion form, (¢) Jordan canonical form,
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To abtain the Jordan canonical form we expand the transfer functions in partial fractions

M) 1, MM
s)=—S5+—5———=
! s S+ K/M
MM MM (M =M, + M) {31.5)
)= ! -+ l_ll
Hals) s S+ K/M

The _system has a double pole at the origin and a pair of imaginary poles at s =
“c{:m\:wu. To the real form, the two terms with the imaginary poles are already combined in
(31.5). The block diagram representation of (31.5) in the lorm appropriate for a single-input,
two-output system is shown in Fig. 3.18{c). The system mautrices cortesponding to this
realization are

0 1] o 0 0
e o! o 0
A= .--.f ........ gl
0 0 o0 1 0
0 0,-K/M 0 1
[ 0 MM 0
C= 4 D=0

The A matrix has been partitioned 1o show the block-diagonal form. The upper left-hand
matrix is in the {(superdiagonal) Jordan form for a repeated pole at the origin; the lower
right-hand matrix is in the companion form for a second-order system.

PROBLEMS

Problem 3.1 Exercises in resolvents and transition matrices

Find the resolvents and transition matrices for each of the following:

-1 0 o

{a) A= 1 -2 o
1 2 -3

-1 0 o0

by A,=] 1 -1 0
0 1 -1

~2 1 1

{e) Ay={ I -2 1
l 1 =2

Problem 3.2 Exercises on canonical forms

Determine the canonical forms (companion and Jordan} for each of the following transfer
functions:

{(s+2){s+4)

@ M) = G006 13)
s+2

®) Ry = e

(0) H(s)=——3

(s+D¥s+2)
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Figure P3.3 Tandem canonical form.

Problem 3.3 Another canonica! form

An alternative to the Jordan canonical form for single-input, single-output systems is the
“tandem form’' shown in Fig. P3.3.

(a) Write the A, B, and ¢ matrices for this form.
(b) Given the system in Jordan form % = Ax + By where A = diag{—s,, —sy,...,~s5,], find the
transformation matrix T that transforms it to the tandem form.

Problem 3.4 Adjoint equation

Show that the state transition matrix satisfies the following differential equation
ab(t, 1)
o = ~®(1, 1) A(r) (P3.4)
T

Hint: Use dX™'(1)/dt = = X"} dX (1)/d) X (1),
Equation (P3.4) is sometimes called the “adjoint” equation, or the *‘backward-evelution™
equation.

Problem 3.5 Coefficients in second companion form

Find the relationship between the coefficients 41, ---, gy of the second companion form, Fig.
3.13, to the coefticients of the numerator and denominator of the transfer function H(s).

Problem 3.6 Motor-driven cart with pendulum

Consider the inverted pendutum on a cart driven by an electric motor that was studied in Prob.
2.1. Let the state vector, control, and outputs be defined by
x=[x%6,6] w=e y-[x6}f

(a} Find the matrices A, B, C, and D of the state-space characterization of the system.
(b) Draw the block-diagram representation of the system.

(¢} Find the resolvent and the state-transition matrix.

(d) Find the transfer functions from the input u to the two outputs.

The following numerical data may be used if yon would rather use numbers than letters:

m=0.]kg M =10kg I=1.0m g=98m-s?
k=1V-s R =100Q r=002m
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Problem 3.7 Three-capacitance therma} system

For the insulated conducting bar of Prob. 2.1, using as the state, vectar, control, and
exogenous variables

x =[by, vy, 03]

I

u=e
Xg =g

“(a) Find the matrices A, B, and E of the state-space characterization of the system.
(b) Find the resolvent and the state-transition matrix.

(¢) Find the transfer function from the input 1 = o to the output y = ;.

Use R=1,C=2.

Problem 3.8. Eigenvalues of R- (" network

Consider 4 passive electrical network (consisting of only capacitors, resistors, plus voltage, and
current sources). Show that all the eigenvatues lie on the negative real axis.

Problem 3.9 Two-car train

Consider the two-car train of Prob. 2.5 with the following numerical data:

Trains: M, = M, = 1.0kg, K = 40 N/m.
Motors: k=2V-s, R=100€, r = 2 cm.

(a} Find the transfer functions from the input voltages to the motor positions.
{b) Find the apen-loop poles of the system.

NOTES

Note 3.1 Numerical calculation of the transition matrix
It might seem that the numerical determination of the state-transition matrix
D(T) = T
with T fixed is a fairly routine numerical task. Algorithms can be based on the series definition
O(T)=e?T =1+ AT+ A2T?/21+ - - -
or an the basic definition of an exponential

e4T = lim({ + AT/ n)"
n+w

The transition matrix can also be computed by numerical integration of the matrix differential
equation & = Ad with the initial condition ©(0) = I. A variety of numerical integration algorithms
(e.g., Runge-Kutta, predictor-corrector, implicit) and implemented computer codes are available.

It is also possible to transform A to Jordan canonical form (diagonal form for nonrepeated
eigenvalues)

A= VAV~
where 4 is in the Jordan form as given by (3.118). Then
AT = <m\mﬂ v-!

and %7 has a particularly simple form. (When A=A = diag[s,, 5a, ..., 5] then AT =
diagfet’ e%", ..., e%"]) A number of algorithms are available for finding the eigenvalues of A

(i.e., $y,...+, 8) and the corresponding transformation matrix V.
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Notwithstanding the abundance of potentially suitable algorithms, when the dimension of A is
large and when the eigenvalues have a range of several orders of magnitude, an accurate efficient
algorithm for computing e*” is not trivial.

Note 3.2 Time-varying systems

If we assume that the laws of nature do not change with time, we should not expect to
encounter time-varying differential equations in the description of physical processes. Nonlinear,
yes; but time-varying, no. Even if we accept this hypothesis, however, it is often necessary to deal
with time-varying systems as an approximate representation of the physical wortd. Consider, for
example, the motion of an aircraft, for which u set of time-invariant, but highly nonlinear equations
can be written using established methods. These differential equations would be appropriate for use
in an accurate simulation of the aircraft behavior. But for purposes of design it may be necessary to
use a simplified, linear model. When the dynamics are linearized, the resulting differential equations
(i.e., the A and B mairices) will have coefficients that depend on such variables as dynamic pressure
Q = pv?/2 which depend on time.

Example 3B is another example of how a nonlinear time-invariant system is approximated by
a linear, time-varying system.

Neote 3.3 Laplace transferm of exponential

To show that the Laplace transform of e*' is (s/ — 4)™' consider the special case in which A
is similar to a diagonal matrix A= VAV™' where A =diag[s,, $5...,5) Then e*' =
Vie®',...,e%'1V™". Then the Laplace transform of e*' is V[(s=-s)",..., (s—s)"jv"!
V(sI = A)7'V™! = (sI - A)™". There are many other ways of showing this.

Note 3.4 Schuler period; inertial navigation

The period of a pendulum is T = Nd,\ﬁ (independent of the mass of the bob, which is why
a pendulum clock can be extremely accurate). A pendulum having a length { equal to the earth’s
radius has a period of 84.4 minutes which is commonly called the Schuler period in honar of the
German applied physicist Max Schuler[7] who showed in 1923 that any pendulum having this
length would remain vertical even if the pivot moves. This principle is the basis of inertial
navigation systems. The orientation of the accelerometers in the system is kept constant by locating
them on a *“synthetic Schuler pendulum ™ in which the effect of the long pendulum arm is achieved
by use of precise gyros.

Having become extremely sophisticated after World War II, inertial navigation technology is
critical in strategic missiles and most military aircraft. It is also used extensively for navigation of
madern transoceanic aircraft. Some of the analytical methods of inertial navigation may be found
in [8].

Note 3.5 Minimal realizations

Several methods are displayed in Sec. 3.7 for realizing the transfer functions of a system with
one input and / outputs, or with m inputs and one output, by a system of order k, where k is the
degree of the characteristic polynomial of the system, i.e., the lowest common denominator of all
the scalar transfer functions. By using several realizations in paraliel it is possible to realize a system
with m inputs and [ outputs by a system of order r = k- min (/, m). Bul it may be possible to realize
the matrix of transfer functions by a system of order lower than r. For example, the system of
transfer functions may have been obtained from a known system of differential equations of kth
order as in Examples 2G or 2H. No matter how many inputs or outputs such a system may have,
we know how to realize the transfer functions from all the inputs to all the outputs with a system of
kth order.

If the transfer functions alone from the inputs to the outputs are given, however, the minimum
number of differential equations (or integrators, in the block diagram representation) is not obvious,

and the determination of this **minimum realization" is a significant and nontrivial problem. The

m
w
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problem is important not out of a desire to economize on hardware—a few integrators more or less
is hardly of consequence—but because a nonminimum realization is either uncontrollable or
unobservable (or both) in the sense defined and explained in Chap. 5, and may cause theoretical or
computational difficulties.

The theory of minimum realizations is fundamental to the algebraic treatment of linear
systems, as presented by Kailath[4] for example. Unfortunately, this theory falls far outside the
scope of the present text.
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