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Chapter 3
Fundamentals of Lyapunov Theory

Given a control system, the first and most important question about its various
properties is whether it is stable, because an unstable control system is typically
useless and potentially dangerous. Qualitatively, a system is described as stable if
starting the system somewhere near its desired operating point implies that it will stay
around the point ever after. The motions of a pendulum starting near its two
equilibrium points, namely, the vertical up and down positions, are frequently used to
illustrate unstable and stable behavior of a dynamic system. For aircraft control
systems, a typical stability problem is intuitively related to the following question:
will a trajectory perturbation due to a gust causc a significant deviation in the later
flight trajectory? Here, the desired operating point of the system is the flight
trajectory in the absence of disturbance. Every control system, whether linear or
nonlinear, involves a stability problem which should be carefully studied.

The most useful and general approach for studying the stability of nonlinear
control systems is the theory introduced in the late 19" century by the Russian
mathematician Alexandr Mikhailovich Lyapunov. Lyapunov’s work, The Generai
Problem of Motion Stability, includes two methods for stability analysis (the so-called
linearization method and direct method) and was first published in 1892. The
linearization method draws conclusions about a nonlinear system’s local stability
around an equilibrium point from the stability properties of its linear approximation
The direct method is not restricted to local motion, and determines the stability
properties of a nonlinear system by constructing a scalar "energy-like" function for the
system and examining the function’s time variation. For over half a century, however
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Sect. 3.1 Nonlinear Systems and Equilibrium Points 41

Lyapunov’s pioneering work on stability received little attention outside Russia,
although it was translated into French in 1908 (at the instigation of Poincare), and
reprinted by Princeton University Press in 1947. The publication of the work of Lur’e
and a book by La Salle and Lefschetz brought Lyapunov’s work to the attention of the
larger control engineering community in the early 1960’s. Many refinements of
Lyapunov’s methods have since been developed. Today, Lyapunov’s linearization
method has come to represent the theoretical justification of linear control, while
Lyapunov’s direct method has become the most important tool for nonlinear system
analysis and design. Together, the linearization method and the direct method
constitute the so-called Lyapunov stability theory.

The objective of this and the next chapter is to present Lyapunov stability
theory and illustrate its use in the analysis and the design of nonlinear systems. To
prevent mathematical complexity from obscuring the theoretical concepts, this chapter
presents the most basic results of Lyapunov theory in terms of autonomous (i.e., time-
invariant) systems, leaving more advanced topics to chapter 4. This chapter is
organized as follows. In section 3.1, we provide some background definitions
concemning nonlinear systems and equilibrium points. In section 3.2, various concepts
of stability are described to characterize different aspects of system behavior.
Lyapunov’s linearization method is presented in section 3.3. The most useful theorems
in the direct method are studied in section 3.4. Section 3.5 is devoted to the question
of how to use these theorems to study the stability of particular classes of nonlinear
systems. Section 3.6 sketches how the direct method can be used as a powerful way
of designing controllers for nonlinear systems.

3.1 Nonlinear Systems and Equilibrium Points

Before addressing the main problems of defining and determining stability in the next
sections, let us discuss some relatively simple background issues.

NONLINEAR SYSTEMS

A nonlinear dynamic system can usually be represented by a set of nonlinear
differential equations in the form

x =f(x, ?) 3.1)

where f is a nx1 nonlinear vector function, and x is the nx1 state vector. A particular
value of the state vector is also called a point because it corresponds to a point in the
state-space. The number of states n is called the order of the system. A solution x(¢)
of the equations (3.1) usually corresponds to a curve in state space as ¢ varies from
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zero to infinity, as already seen in phase plane analysis for the case n = 2. This curve is
generally referred to as a state trajectory Or a system trajectory.

-~ It is important to note that although equation (3.1) does not explicitly contain

' the cofifrol input as a variabie, it is directly applicable to feedback control systems.
The reason is that equation (3.1) can represent the closed-loop dynamics of a feedback
control system, with the control input being a function of state x and time f, and
§heréfore disappearing in the closed-loop dynamics. Specifically, if the plant dynamics
is

x =f(x,u,)

and some control law has been selected
=g,

then the closed-loop dynamics is
x = fx, g(x, ), 1]

which can be rewritten in the form (3.1). Of course, equation (3.1) can also represent
dynamic systems where no control signals are involved, such as a freely swinging
pendulum.

A special class of nonlinear systems are linear systems. The dynamics of linear
systems are of the form

x=A()X
where A(t) is an #xXn matrix.
AUTONOMOUS AND NON-AUTONOMOUS SYSTEMS

Linear systems are classified as either time-varying or time-invariant, depending on
whether the system matrix A varies with time or not. In the more general context of
nonlinear systems, these adjectives are traditionally replaced by "autonomous” and
"non-autonomous’.

Definition 3.1 The nonlinear system (3.1) is said to be autonomous if f does not
depend explicitly on time, i.e., if the system’s state equation can be written

x = f(x) (3.2)

Otherwise, the system is called non-autonomous .

Obviously, linear time-invariant (LTI) systems are autonomous and linear time-
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varying (LTV) systems are non-autonomous. The second-order systems studied in
chapter 2 are all autonomous. .

Strictly speaking, all physical systems are non-autonomous, because none of
their dynamic characteristics is strictly time-invariant. The concept of an autonomous
system is an idealized notion, like the concept of a linear system. In practice,
however, system properties often change very slowly, and we can neglect their time |
variation without causing any practically meaningful error. ,ig‘!

It is important to note that for control systems, the above definition is made on
the closed-loop dynamics. Since a control system is composed of a controller and a
plant (including sensor and actuator dynamics), the non-autonomous nature of a
control system may be due to a time-variation either in the plant or in the control law. ig
Specifically, a time-invariant plant with dynamics W

x =f(x,u)

: may lead to a non-autonomous closed-loop system if a controller dependent on time ¢ I
is chosen, i.e., if u = g(x, 1). For example, the closed-loop system of the simple plant I
%=—x+u can be nonlinear and non-autonomous by choosing u to be nonlinear and *;
time-varying (e.g., u = — x2 sin £). In fact, adaptive controllers for linear time-invariant
plants usually make the closed-loop control systems nonhnear and non-autonomous.

The fundamental difference between autonomous and non-autonomous systems
lies in the fact that the state trajectory of an autonomous system is independent of the
initial time, while that of a non-autonomous system generally is not. As we will see in
the next chapter this difference requires us to consider the initial time explicitly in
defining stability concepts for non-autonomous systems, and makes the analysis more
difficult than that of autonomous systems.

It is well known that the analysis of linear time-invariant systems is much easier 1
than that of linear time-varying systems. The same is true with nonlinear systems.
Generally speaking, autonomous systems have relatively simpler properties and their '
analysis is much easier. For this reason, in the remainder of this chapter, we will l

|
|
i

concentrate on the analysis of autonomous systems, represented by (3.2). Extensions
of the concepts and results to non-autonomous systems will be studied in chapter 4.

EQUILIBRIUM POINTS "‘

It is possible for a system trajectory to correspond to only a single point. Such a point 1
is called an equilibrium point. As we shall see later, many stability problems are |
naturally formulated with respect to equilibrium points. E‘




02/01/99 MON 19:02 FAX 213 7405687 USC Neuroscience Program 4005

44 Fundamentals of Lyapunov Theory | Chap. 3

Definition 3.2 A state X" is an equilibrium state (or equilibrium point) of the system
if once X(t) is equal to x* it remains equal to X" for all future time.

Mathematically, this means that the constant vector x* satisfies
0 =f(x*) (3.3)
Equilibrium points can be found by solving the nonlinear algebraic equations (3.3).
A linear time-invariant system
x=AX (3.4)

has a single equilibrium point (the origin 0) if A is nonsingular. If A is singular, it has
an infinity of equilibrium points, which are contained in the null-space of the matrix
A, i.e., the subspace defined by Ax = 0. This implies that the equilibrium points are
not isolated, as reflected by the example X + X =0, for which all points on the x axis
of the phase plane are equilibrium points.

A nonlinear system can have several (or infinitely many) isolated equilibrium
points, as seen in Example 1.1. The following example involves a familiar physical
system.

Example 3.1: The Pendulum

Consider the pendulum of Figure 3.1, whose dynamics is given by the following nonlinear

autonomous equation

MR>8+b6+ MgRsin®=0 (3.5)

Figure 3.1 : The pendulum

I B
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where R is the pendulum’s length, M its mass, b the friction coefficient at the hinge, and g the
gravity constant. Letting x; =0, x, = 0, the corresponding state-space equation is

).Cl = X (3.63)

g

MR?
Therefore, the equilibrium points are given by
x,=0, sinx;=0

which leads to the points (0 [27], 0) and (x [27], 0). Physically, these points correspond to the
pendulum resting exactly at the vertical up and down positions. O

In linear system analysis and design, for notational and analytical simplicity, we
often transform the linear system equations in such a way that the equilibrium point is
the origin of the state-space. We can do the same thing for nonlinear systems (3.2),
about a specific equilibrium point. Let us say that the equilibrium point of interest is
x". Then, by introducing a new variable

y=Xx-X

and substituting x =y + X" into equations (3.2), a new set of equations on the variable
y are obtained

y=f(y+x") (3.7)

One can easily verify that there is a one-to-one correspondence between the solutions
of (3.2) and those of (3.7), and that in addition, y= 0, the solution corresponding to
x = x", is an equilibrium point of (3.7). Therefore, instead of studying the behavior of
the equation (3.2) in the neighborhood of x*, one can equivalently study the behavior
of the equations (3.7) in the neighborhood of the origin.

NOMINAL MOTION

In some practical problems, we are not concerned with stability around an equilibrium
point, but rather with the stability of a morion, i.e, whether a system will remain close
to its original motion trajectory if slightly perturbed away from it, as exemplified by
the aircraft trajectory control problem mentioned at the beginning of this chapter. We
can show.that this kind of motion stability problem can be transformed into an
equivalent stability problem around an equilibrium point, although the equivalent
system is nOw non-autonomous.

Let x"(7) be the solution of equation (3.2), i.e., the nominal motion trajectory,
corresponding to initial condition x"(0) = X,. Let us now perturb the initial condition
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to be x(0) = x,, + 8x,, and study the associated variation of the motion error
e(?) = x(t) — X" (9)

as illustrated in Figure 3.2. Since both x"(¢) and x(¢) are solutions of (3.2), we have
y?

x(t

e(t)

X

Xn

Figure 3.2 : Nominal and Perturbed Motions

X" =f(x") x(0) =x,
x =f(x) x(0) = x,, + 0X,,
then e(?) satisfies the following non-autonomous differential equation
e=f(x" +e 0 —f(x", =g (3.8)

with initial condition e(0) = 8x,,. Since g(0, ) =0, the new dynamic system, with e as
state and g in place of f, has an equilibrium point at the origin of the state space.
Therefore, instead of studying the deviation of x(7) from x*(¢) for the original system,
we may simply study the stability of the perturbation dynamics (3.8) with respect to
the equilibrium point 0. Note, however, that the perturbation dynamics is non-
autonomous, due to the presence of the nominal trajectory x"(f) on the right-hand side.
Each 'particular nominal motion of an autonomous system corresponds to an_
equivalent non-autonomous system, whose study requires the non-autonomous system..
analysis techniques to be presented in chapter 4.

Let us now illustrate this important transformation on a specific system.
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Example 3.2: Consider the autonomous mass-spring system

which contains a nonlinear term reflecting the hardening effect of the spring. Let us study the
stability of the motion x*(#) which starts from initial position x,,.

Assume that we slightly perturb the initial position to be x(0) = x,, + &x,. The resulting system
trajectory is denated as x(#). Proceeding as before, the equivalent differential equation governing
the motion error e is

mé + kje + k[ 325 W +3ex*2)]1 = 0
Clearly, this is a non-autonomous system. O

Of course, one can also show that for non-autonomous nonlinear systems, the
stability problem around a nominal motion can also be transformed as a stability
problem around the origin for an equivalent non-autonomous system.

Finally, note that if the original system is autonomous and linear, in the form
(3.4), then the equivalent system is still autonomous, since it can be written

e=Ae

3.2 Concepts of Stability

In the beginning of this chapter, we introduced the intuitive notion of stability as a
kind of well-behavedness around a desired operating point. However, since nonlinear
systems may have much more complex and exotic behavior than linear systems, the
mere notion of stability is not enough to describe the essential features of their motion.
A number of more refined stability concepts, such as asymptotic stability, exponential
stability and global asymptotic stability, are needed. In this section, we define these
stability concepts formally, for autonomous systems, and explain their practical
meanings.

A few simplifying notations are defined at this point. Let By denote the
spherical region (or ball) defined by || x || <R in state-space, and Sg the sphere itself,
defined by || x || = R.

41008
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STABILITY AND INSTABILITY
Let us first introduce the basic concepts of stability and instability.

Definition 3.3  The equilibrium state x = 0 is said to be stable if, for any R >0, there
exists >0, such that if ||X(O)||<r, then |X(DI| <R for all t20 . Otherwise, the
equilibrium point is unstable.

Essentially, stability (also called stability in the sense of Lyapunov, or Lyapunov
stability) means that the system trajectory can be kept arbitrarily close to the origin by
starting sufficiently close to it. More formally, the definition states that the origin is
stable, if, given that we do not want the state trajectory x(¢) to get out of a.ball of
arbitrarily specified radius By, , a value r(R) can be found such that starting the state
from within the ball B, at time 0 guarantees that the state will stay within the ball B R
thereafter. The geometrical implication of stability is indicated by curve 2 in Figure
3.3. Chapter 2 provides examples of stable equilibrium points in the case of second-
order systems, such as the origin for the mass-spring system of Example 2.1, or stable
nodes or foci in the local linearization of a nonlinear system.

Throughout the book, we shall use the standard mathematical abbreviation
symbols:

to mean "for any”
for "there exists"
for "in the set”

> for "implies that"

m L <

Of course, we shall say interchangeably that A implies B, or that A is a sufficient
condition of B, or that B is a necessary condition of A, If A => B and B => A,
then A and B are equivalent, which we shall denote by A <=> B .

Using these symbols, .Definition 3.3 can be written
VR>0,3r>0, [xO)|I<r => Vi20,x(®I<R
or, equivalently
VR>0,3r>0, x(0O)e B, => Vr20,x()e By

Conversely, an equilibrium point is unstable if there exists at least one ball Bp,
such that for every r >0, no matter how small, it is always possible for the system
trajectory to start somewhere within the ball B, and eventually leave the ball B,
(Figure 3.3). Unstable nodes or saddle points in second-order systems are examples of
unstable equilibria. Instability of an equilibrium point is typically undesirable, because
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it often leads the system into limit cycles or results in damage to the involved
mechanical or electrical components.

curve 1 - asymptotically stable

curve 2 - marginally stable

curve 3 - unstable

Figure 3.3 : Concepts of stability

It is important to point out the qualitative difference between instability and the
intuitive notion of "blowing up" (all trajectories close to origin move further and
further away to infinity). In linear systems, instability is equivalent to blowing up,
because unstable poles always lead to exponential growth of the system states.
However, for nonlinear systems, blowing up is only one way of instability. The
following example illustrates this point.

Example 3.3: Instability of the Van der Pol Oscillator

The Van der Pol oscillator of Example 2.6 is described by
X=X

Xy=—x; +(1 -x2)x,

One easily shows that the system has an equilibrium point at the origin.

As pointed out in section 2.2 and seen in the phase portrait of Figure 2.8, system trajectories

starting from any non-zero initial states all asymptotically approach a limit cycle. This implies
that, if we choose R in Definition 3.3 to be small enough for the circle of radius R to fall
completely within the closed-curve of the limit cycle, then system trajectories starting near the
origin will eventually get out of this circle (Figure 3.4). This implies instability of the origin.

Thus, even though the state of the system does remain around the equilibrium point in a
certain sense, it cannot stay arbitrarily close to it. This is the fundamental distinction between
stability and instability. : O




02/01/99 MON 19:06 FAX 213 7405687 USC Neuroscience Program

50 Fundamentals of Lyapunov Theory Chap. 3

trajectories

Figure 3.4 : Unstable origin of the Van der Pol Oscillator

ASYMPTOTIC STABILITY AND EXPONENTIAL‘ STABILITY

In many engineering applications, Lyapunov stability is not enough. For example,
when a satellite’s attitude is disturbed from its nominal position, we not only want the
satellite to maintain its attitude in a range determined by the magnitude of the
disturbance, i.e., Lyapunov stability, but also require that the attitude gradually go
back to its original value. This type of engineering requirement is captured by the
concept of asymptotic stability.

Definition 3.4 An equilibrium point 0 is asymptotically stable if it is stable, and if in
addition there exists some r > 0 such that || x(0) || < r implies that x(r) — 0 gs t— ©o.

Asymptotic stability means that the equilibrium is stable, and that in addition,
states started close to 0 actually converge to 0 as time ¢ goes to infinity. Figure 3.3
shows that system trajectories starting from within the ball B, converge to the origin.
The ball B,.is called a domain of attraction of the equilibrium point (while the domain
of attraction of the equilibrium point refers to the largest such region, i.e., to the set of
all points such that trajectories initiated at these points eventually converge to the
origin). An equilibrium point which is Lyapunov stable but not asymptotically stable
is called marginally stable. '

One may question the need for the explicit stability requirement in the
definition above, in view of the second condition of state convergence to the origin.
However, it it easy to build counter-examples that show that state convergence does
not necessarily imply stability. For instance, a simple system studied by Vinograd has
trajectories of the form shown in Figure 3.5. All the trajectories starting from non-zero

-~
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initial points within the unit disk first reach the curve C before converging to the
origin. Thus, the origin is unstable in the sense of Lyapunov, despite the state
convergence. Calling such a system unstable is quite reasonable, since a curve such as
C may be outside the region where the model is valid — for instance, the subsonic and
supersonic dynamics of a high-performance aircraft are radically different, while, with
the problem under study using subsonic dynamic models, C could be in the supersonic
range.

Figure 3.5 : State convergence does not imply stability

In many engineering applications, it is still not sufficient to know that a system
will converge to the equilibrium point after infinite time. There is a need to estimate
how fast the system trajectory approaches 0. The concept of exponential stability can
be used for this purpose.

Definition 3.5 An equilibrium point O is exponentially stable if there exist two
strictly positive numbers o and A\ such that

V>0, Ix®l < alixO il e M (3.9)

in some ball B, around the origin.

In words, (3.9) means that the state vector of an exponentially stable system
converges to the origin faster than an exponential function. The positive number A is
often called the rare of exponential convergence. For instance. the system

¥ = —(1+sin2x)x

is exponentially convergent to x = 0 with a rate A = 1. Indeed. its solution 18

@012

o
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x(t) = x(0) exp(- j'[1 +sin2(x(r))] d)
o

and therefore
1x()] < 1x(0)] e~

Note that exponential stability implies asymptotic stability. But asymptotic
stability does not guarantee exponential stability, as can be seen from the system

y=-x2, x(0)=1 (3.10)

whose solution is x = 1/(1 + 1), a function slower than any exponential function e~ M

(with A > 0).

The definition of exponential convergence provides an explicit bound on the
state at any time, as seen in (3.9). By writing the positive constant o as &t = eMo it is
easy to see that, after a time of T, + (1/A) , the magnitude of the state vector decreases
to less than 35% (= e~ 1) of its original value, similarly to the notion of rime-constant
in a linear system. After T,+ (3/A) , the state magnitude [[x(n)]| will be less than

5% (= e~ 3) of [Ix(O)|l.
LOCAL AND GLOBAL STABILITY

The above definitions are formulated to characterize the local behavior of systems,
i.e., how the state evolves after starting near the equilibrium point. Local properties
tell little about how the system will behave when the initial state is some distance
away from the equilibrium, as seen for the nonlinear system in Example 1.1. Global
concepts are required for this purpose.

Definition 3.6 If asymptotic (or exponential) stability holds for any initial states, the ‘
equilibrium point is said to be asymptotically (or exponentially) stable in_the large. It r
is also called globally asymptotically (or exponentially) stable. :

For instance, in Example 1.2 the linearized system is globally asymptotically
stable, but the original system is not. The simple system in (3.10) is also globally
asymptotically stable, as can be seen from its solutions.

Linear time-invariant systems are either asymptotically stable, or marginally
stable, or unstable, as can be be seen from the modal decomposition of linear system
solutions; linear asymptotic stability is always global and exponential, and linear
instability always implies exponential blow-up. This explains why the refined notions
of stability introduced here were not previously encountered in the study of linear
Systems. They are explicitly needed only for nonlinear systems.
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3 Linearization and Local Stability

Lyapunov’s' linearization method is concerned with the Jocal stability of a nonlinear
system. It is a formalization of the intuition that a nonlinear system should behave
similarly to its linearized approximation for small range motions. Because all physical
systems are inherently nonlinear, Lyapunov’s linearization method serves as the
fundamental justification of using linear control techniques in practice, i.e., shows that
stable design by linear control guarantees the stability of the original physical system
locally.

Consider the autonomous system in (3.2), and assume that f(x) is continuously

differentiable. Then the system dynamics can be written as

. of :
x = (a—x)x=0 x + £, (%) (3.11)

where f; ,, stands for higher-order terms in x. Note that the above Taylor expansion
starts directly with the first-order term, due to the fact that f(0)=0, since 0 is an
equilibrium point. Let us use the constant matrix A to denote the Jacobian matrix of f
with respect to X at X = 0 (an n X n matrix of elements df; / dx;)

of
A=(22
( Jdx )X=0
Then, the system
x=AX (3.12)

is called the linearization (or linear approximation) of the original nonlinear system at
the equilibrium point 0.

Note that, similarly, starting with a non-autonomous nonlinear system with a control input u
x = f(x, uw)
such that (0. 0) =0, we can write

: af 3t
* = X+ \ 5= u+f, . (x,u)
ax)(x=0,u=0) (a“)(x=0,u=0) h.o.t.

where f,, , stands for higher-order terms in X and u. Letting A denote the Jacobian matrix of f with
respect to x at (x=0,u=0), and B denote the Jacobian matrix of f with respect to u at the same

#1014
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A

af f
(ﬁ)u:o,u:o) B=(a_u)<x=0.u=0)

the system

Ax + Bu

X
is the linearization (or linear approximation) of the original nonlinear system at (x = 0,u=0).

Furthermore, the choice of a control law of the form u = u(x) (with u(0)=0) transforms the
original non-autonomous system into an autonomous closed-loop system, having x=0 as an

equilibrium point. Linearly approximating the control law as

u= d_u) x=Gx
dx/ x=0

the closed-loop dynamics can be linearly approximated as
x=fx,u(x)) = (A+BG)x
Of course, the same linear approximation can be obtained by directly considering the autonomous
closed-loop system
: x = f(x, ux)) = fi(x)
and linearizing the function f; with respect to x, at its equilibrium point x = 0.

In practice, finding a system’s linearization is often most easily done simply by
neglecting any term of order higher than 1 in the dynamics, as we now illustrate.

Example 3.4: Consider the system

.7.Cl = x22 +xl COs Xy

i

Xy = Xp+ (x)+ 1) X +x) sinxy
Its linearized approximation about x =0 is

X “0+.\’1'1=,\'l

Ky
i

X ~x2+0+.\'1 +X1JC2:X2+xl

=
)
!

The linearized system can thus be written
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A similar procedure can be applied for a controlled system. Consider the system
$+455+(x2+Du=0
The system can be linearly approximated about x = 0 as

¥+0+O0+Du=0

=:0,u=0). _ _ _
i.e., the linearized system can be written

) ) transforms the

. X=—u
ing x=0 as a

Assume that the control law for the original nonlinear system has been selected to be

2

i = sinx+x3 +xcosx

then the linearized closed-loop dynamics is
Y+i+x=0 O

The following result makes precise the relationship between the stability of the

r th t g
+ the adtonomot linear system (3.12) and that of the original nonlinear system (3.2).

Theorem 3.1 (Lyapunov’s linearization method)

o If the linearized system is strictly stable (i.e, if all eigenvalues of A are
strictly in the left-half complex plane), then the equilibrium point is
lone simply by asymptotically stable (for the actual nonlinear system).

Hustrate. ) , L : .
o If the linearized system is unstable (i.e, if at least one eigenvalue of A is

strictly in the right-half complex plane), then the equilibrium point is unstable
(for the nonlinear system).

o If the linearized system is marginally stable (i.e, all eigenvalues of A are in
the left-half complex plane, but at least one of them is on the j® axis), then
one cannot conclude anything from the linear approximation (the equilibrium
point may be stable, asymptotically stable, or unstable for the nonlinear
systen).

While the proof of this theorem (which is actually based on Lyapunov’s direct
method, see Exercise 3.12) shall not be detailed, let us remark that its results are
. intuitive. A summary of the theorem is that it is true by continuity. If the linearized
| System is strictly stable, or strictly unstable, then, since the approximation is valid "not
. too far" from the equilibrium, the nonlinear system itself is locally stable, or locally
unstable. However, if the linearized system is marginally stable, the higher-order
terms in (3.11) can have a decisive effect on whether the nonlinear system is stable or

#1016
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unstable. As we shall see in the next section, simple nonlinear systems may be
globally asymptotically stable while their linear approximations are only marginally
stable: one simply cannot infer any stability property of a nonlinear system from its
marginally stable linear approximation.

Example 3.5: As expected, it can be shown easily that the equilibrium points (8 =t [2%], §= 0)
of the pendulum of Example 3.1 are unstable. Consider for instance the equilibrium point
©O=m, 6 =0). Since, in a neighborhood of 8 = &, we can write

sinB = sinw+cosw (O—m) +hot = (n—0)+hot

thus, letting 8=0-mn , the system’s linearization about the equilibrium point @ =7, §= 0) is

Hence the linear approximation is unstable, and therefore so is the nonlinear system at this
equilibrium point. O

Example 3.6: Consider the first order system
k=ax+bx’

The origin 0 is one of the two equilibrium points of this system. The linearization of this system

around the origin is
Xx=ax

The application of Lyapunov’s linearization method indicates the following stability properties of

the nonlinear system

e g <0 : asymptotically stable;
e g > 0 : unstable;
o a2 =0 : cannot tell from linearization.

In the third case, the nonlinear system is
i=bhyd

The linearization method fails while, as we shall see, the direct method to be described can easily
solve this problem. ' O
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jystems may b{ Lyapunov’s linearization theorem shows that linear control design is a matter of
only marginall canszstency one must design a controller such that the system remain in its "linear
system from jrange”. It also stresses major limitations of linear design: how large is the linear
range? What is the extent of stability (how large is 7 in Definition 3.3) ? These
iquestions motivate a deeper approach to the nonlinear control problem, Lyapunov’s

©®=nf2n},b= 0d1rect method.
equilibrium pomr

Lyapunov’s Direct Method

The basic philosophy of Lyapunov’s direct method is the mathematical extension of a
6=m.6=0)is Ffundamental physical observation: if the total energy of a mechanical (or electrical)
system is continuously dissipated, then the system, whether linear or nonlinear, must
leventually settle down to an equilibrium point. Thus, we may conclude the stability of

.a system by examining the variation of a single scalar function.
lear system at thi’

[ Specifically, let us consider the nonlinear mass-damper-spring system in Figure
:3.6, whose dynamic equation is

m + bkl +k, x+k;x3=0 (3.13)

‘ ' i:Fwith bx|x| representing nonlinear dissipation or damping, and (k,x+ klx?’)
ttion of this syster'yorrecenting a nonlinear spring term. Assume that the mass is pulled away from the
"natural length of the spring by a large distance, and then released. Will the resulting
'motion be stable? Tt is very difficult to answer this question using the definitions of
stablhty, because the general solution of this nonlinear equation is unavailable. T he
ibility properties ¢, lmeanzatlon method cannot be used either because the motion starts outside the linear

grange (and in any case the system’s linear approximation is only marginally stable).

: However, examination of the system energy can tell us a lot about the motion pattern.

nonlinear
spring and
damper

|
4

escribed can easily

;
ily / 7 x Figure 3.6 : A nonlinear mass-damper-
[ _ __ .

;; spring system

\ The total mechanical energy of the system is the sum of its kinetic energy and
1t potential energy

#1018
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Vix) = % mx? + J': (k, x + k1x3) dx = %mftz + % k, x2+ % k1x4 (3.14)
Comparing the definitions of stability and mechanical energy, one can easily see some

relations between the mechanical energy and the stability concepts described earlier:

e zero energy corresponds to the equilibrium point (x = 0, X = 0)
“e asymptotic stability implies the convergence of mechanical energy to zero
e instability is related to the growth of mechanical energy

These relations indicate that the value of a scalar quantity, the mechanical energy,
indirectly reflects the magnitude of the state vector; and furthermore, that the stability
properties of the system can be characterized by the variation of the mechanical
energy of the system.

The rate of energy variation during the system’s motion is obtained easily by
differentiating the first equality in (3.14) and using (3.13)

V(X) = mi% + (kyx + k; x3) k= & (-bxlkl) = -blxI3 (3.15)

Equation (3.15) implies that the energy of the system, starting from some initial value,
is continuously dissipated by the damper until the mass settles down, i.e., until x = 0.
Physically, it is easy to see that the mass must finally settle down at the natural length
of the spring, because it is subjected to a non-zero spring force at any position other
than the natural length.

The direct method of Lyapunov is based on a generalization of the concepts in
the above mass-spring-damper system to more complex systems. Faced with a set of
nonlinear differential equations, the basic procedure of Lyapunov’s direct method is to
generate a scalar "energy-like" function for the dynamic system, and examine the time
variation of that scalar function. In this way, conclusions may be drawn on the
stability of the set of differential equations without using the difficult stability
definitions or requiring explicit knowledge of solutions.

3.4.1 Positive Definite Functions and Lyapunov Functions

The energy function in (3.14) has two properties. The first is a property of the function
itself: it is strictly positive unless both state variables v and X are zero. The second
property is a property associated with the dynamics (3.13): the function is
monotonically decreasing when the variables x and I vary according to (3.13). In
Lyapunov’s direct method, the first property is formalized by the notion of positive
definite functions, and the second is formalized by the so-called Lyapunov functions.
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Definition 3.7 A scalar continuous function V(X) is said to be locally positive
definite if V(0) = 0 and, in a ball By
o

xz0 = Vx>0

If V(0) = 0 and the above property holds over the whole state space, then V(X) is said
to be globally positive definite.

For instance, the function

V(x) = 2MR2 2 + MR(1-cosx;)

which is the mechanical energy of the pendulum of Example 3.1, is locally positive
definite. The mechanical energy (3.14) of the nonlinear mass-damper-spring system is
globally positive definite. Note that, for that system, the kinetic energy (1/2) m X2 is
not positive definite by itself, because it can equal zero for non-zero values of x.

The above definition implies that the function V has a unique minimum at the
origin 0. Actually, given any function having a unigue minimum in a certain ball, we
can construct a locally positive definite function 81mply by adding a constant to that
function. For example, the function V(x) = xlz + x2 —1 is a lower bounded function
with a unique minimum at the origin, and the addition of the constant 1 to it makes it a
positive definite function. Of course, the function shifted by a constant has the same
time-derivative as the original function.

Let us describe the geometrical meaning of locally positive definite functions.
Consider a positive definite function V(x) of two state variables x; and x,. Plotted in a

3-dimensional space, V(x) typically corresponds to a surface looking like an upward

cup (Figure 3.7). The lowest point of the cup is located at the origin.

A second geometrical representation can be made as follows. Taking x; and x,
as Cartesian coordinates, the level curves V(xy, xp) =V, typically represent a set of
ovals surrounding the origin, with each oval corresponding to a positive value of V.
These ovals, often called contour curves, may be thought as the sections of the cup by
horizontal planes, projected on the (x| ,.x,) plane (Figure 3.8). Note that the contour

-~ curves do not intersect, because V(xy, x,) is uniquely defined given (x| , xp).

A few related concepts can be defined similarly, in a local or global sense, i.e., a

‘function V(X) is negative definite if —V(x) is positive definite; V(x) is positive

?‘emi-deﬁnite if V(0) =0 and V(x) = 0 for x # 0; V(x) is negative semi-definite if —V(x)

- 18 positive semi-definite. The prefix "semi” is used to reflect the possibility of V' being

4020
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1%

*
Figure 3.7 : Typical shape of a positive definite function V(x(, X5)

equal to zero for x # 0. These concepts can be given geometrical meanings similar to
the ones given for positive definite functions.

With x denoting the state of the system (3.2), a scalar function V(X) actually
represents an implicit function of time . Assuming that V(x) is differentiable, its
derivative with respect to time can be found by the chain rule,

, LAV 3V 3V
V = o axx aXf(x)

Figure 3.8 : Interpreting positive definite functions using contour curves

USC Neuroscience Program do21
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We see that, because x is required to satisfy the autonomous state equations (3.2),
V only depends on x. It is often referred to as "the derivative of V along the system
trajectory”. For the system (3.13), f/(x) is computed in (3.15) and found to be negative.
Functions such as V in that example are given a special name because of their
importance in Lyapunov’s direct method.

Definition 3.8 If, in a ball By , the function V(X) is positive definite and has
o

continuous partial derivatives, and if its time derivative along any state trajectory of

system (3.2) is negative semi-definite, i.e.,

V(x) <0

then V(X) is said to be a Lyapunov function for the system (3.2).

(%]

" |

x(t)

Figure 3.9 : llustrating Definition 3.8 for n =2

A Lyapunov function can be given simple geometrical interpretations. In
Figure 3.9, the point denoting the value of V(x, x,) is seen to always point down an
inverted cup. In Figure 3.10, the state point is seen to move across contour curves
corresponding to lower and lower values of V.

3.4.2 Equilibrium Point Theorems

The relations between Lyapunov functions and the stability of systems are made
Precise in a number of theorems in Lyapunov’s direct method. Such theorems usually
have local and global versions. The local versions are concerned with stability
Properties in the neighborhood of equilibrium point and usually involve a locally
Positive definite function.

4022
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X
2

V=V3 V.<V <V
2 3

1% .
V=V1 x
‘\ ;xl

o

Figure 3.10 : Illustrating Definition 3.8 for n» = 2 using contour curves

LYAPUNOV THEOREM FOR LOCAL STABILITY

Theorem 3.2 (Local Stability) If, ina ball B R, there exists a scalar function V(X)
with continuous first partial derivatives such that

e V(x) is positive definite (locally in By )
4
o V(x) is negative semi-definite (locally inBp )
[

then the equilibrium point 0 is stable. If, actually, the derivative V(x) is locally
negative definite in By , then the stability is asymptotic.
o

The proof of this fundamental result is conceptually simple, and is typical of
many proofs in Lyapunov theory.

Proof: Let us derive the result using the geometric interpretation of a Lyapunov function, as
illustrated in Figure 3.9 in the case n =2. To show stability, we must show that given any strictly
positive number R, there exists a (smaller) strictly positive number » such that any trajectory
starting inside the ball B, remains inside the ball By, for all future time. Let m be the minimum of
V on the sphere Sg . Since V is continuous and positive definite, m exists and is strictly positive.
Furthermore, since V(0) = 0, there exists a ball B,. around the origin such that V(x) <m forany x
inside the ball (Figure 3.11a). Consider now a trajectory whose initial point x(0) is within the ball
B, . Since V is non-increasing along system trajectories, V remains strictly smaller than m, and

therefore the trajectory cannot possibly cross the outside sphere Sp . Thus, any trajectory starting
inside the ball B, remains inside the ball By , and therefore Lyapunov stability is guaranteed.

Let us now assume that V is negative definite, and show asymptotic stability, by
contradiction, Consider a trajectory starting in some ball B, as constructed above (e.g., the ball B,
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(a) (b)
Figure 3.11 : Nllustrating the proof of Theorem 3.2 forn =2

corresponding to R = R). Then the trajectory will remain in the ball By, for all future time. Since
V is lower bounded and decreases continually, V tends towards a limit L, such that
Vi20,Vx(@®) =L, Assume that this limit is not zero, i.e., that L> 0. Then, since V is
continuous and V(0) =0, there exists a ball B, that the system trajectory never enters (Figure
3.11b). Bat then, since ~ V is also Continuoug and positive definite, and since Bp is bounded,
—V must remain larger than some strictly positive number L. Thisisa contradiction, because it
would imply that V(s) decreases from its initial value V, to a value strictly smaller than L, in a
finite time smaller than [V, — L]/L,. Hence, all trajectories starting in B, asymptotically converge
to the origin. O

In applying the above theorem for analysis of a nonlinear system, one goes
through the two steps of choosing a positive definite function, and then determining its
derivative along the path of the nonlinear systems. The following example illustrates
this procedure.

Example 3.7: Local Stability
A simple pendulum with viscous damping is described by
8+0+sin06=0

Consider the following scalar function

V(x) = (1—cosB) + 972
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- One easily verifies that this function is locally positive definite. As a matter of fact, this function
represents the total energy of the pendulum, composed of the sum of the potential energy and the
kinetic energy. Its time-derivative is easily found to be '

V(x) = bsin0+66 = -62<0

Therefore, by invoking the above theorem, one concludes that the origin is a stable equilibrium
point. In fact, using physical insight, one easily sees the reason why V(x) < 0, namely that the
damping term absorbs energy. Actually, Vis precisely the power dissipated in the pendulum.
However, with this Lyapunov function, one cannot draw conclusions on the asymptotic stability
of the system, because V(x) is only negative semi-definite. O

The following example illustrates the asymptotic stability result.
Example 3.8: Asymptotic stability

Let us study the stability of the nonlinear system defined by

Xy=x (2 + x50 -2) - 43, xy?

l' | ; = 4.\'12.\(2 ) (x12 +Xy° = 2)

around its equilibrium point at the origin. Given the positive definite function
V(x,,xp) = .\'12 + ,x‘zz

its derivative Valong any system trajectory is
V=20 2+ 50 (2 3,2 2)

Thus, V is locally negative definite in the 2-dimensional ball B,, i.e.. in the region defined by
.\‘12 + .\‘22 < 2. Therefore. the above theorem indicates that the origin is asymptotically stable. O

LYAPUNOV THEOREM FOR GLOBAL STABILITY

The above theorem applies to the local analysis of stability. In order to assert global
asvmptotic stability of a system, one might naturally expect that the ball BR() in the
above local theorem has to be expanded to be the whole state-space. This is indeed
necessary, but it is not enough. An additional condition on the function V has to be
satisfied: V(x) must be radially unbounded, by which we mean that V(x) — ©° as
lIx|]] = e (in other words, as x tends to infinity in any direction). We then obtain the
following powerful result:
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Theorem 3.3 (Global Stability) Assume that there exists a scalar function 'V of the
state x, with continuous first order derivatives such that

o V(x) is positive definite
° f/(x) is negative definite

e V(x) > as |x||—>o°

then the equilibrium at the origin is globally asymptotically stable.

Proof: The proof is the same as in the local case, by noticing that the radial unboundedness of V,
combined with the negative definiteness of v, implies that, given any initial condition x,, the

trajectories remain in the bounded region defined by V(x) < V(x,). O

The reason for the radial unboundedness condition is to assure that the contour
curves (or contour surfaces in the case of higher order systems) V(x) =V correspond
to closed curves. If the curves are not closed, it is possible for the state trajectories to
drift away from the equilibrium point, even though the state keeps going through
contours corresponding to smaller and smaller V,’s. For example, for the positive
definite function V = [.r12/(1 + x12)1+ xzz, the curves V(x) =V, for V> 1 are open
curves. Figure 3.12 shows the divergence of the state while moving toward lower and
lower "energy” curves. Exercise 3.4 further illustrates this point on a specific system.

Figure 3.12 : Motivation of the radial unboundedness condition
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Example 3.9: A class of first-order systems
Consider the nonlinear system
X+cx)=0
where ¢ is any continuous function of the same sign as its scalar argument x, i.e.,

xcx) >0 for x#0

Intuitively, this condition indicates that — c(x) "pushes” the system back towards its rest position
x =0, but is otherwise arbitrary. Since ¢ is continuous, it also implies that ¢(0) = 0 (Figure 3.13).

Consider as the Lyapunov function candidate the square of the distance to the origin
V=x2?
The function V is radially unbounded, since it tends to infinity as [x]| — ©© . Its derivative is

V=2xx==-2xcx)

Thus V <0 as long as x # 0, so that x =0 is a globally asymptotically stable equilibrium point.

A€ (x)

Figure 3.13 : The function c(x)

For instance, the system

x=sin?x—x

is globally asymptotically convergent to x = 0, since for x # 0, sin? x < |sin x| < |x|. Similarly, the

system
¥=-x3

is globally asymptotically convergent to x=0. Notice that while this system’s linear
approximation (x=0) is inconclusive, even about local stability, the actual nonlinear system
enjoys a strong stability property (global asymptotic stability). O

3 N Y
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Example 3.10: Consider the system
.i':l = X2 —xl (x12 +X22)

Xp=—X| = Xp (xl2 + xzz)

The origin of the state-space is an equilibrium point for this system. Let V be the positive definite
function

V(x) = x12 + x22
st position

re 3.13). : The derivative of V along any system trajectory is

‘:’(x)=2xlkl +2Xy%y = —2(x12+x22)2

which is negative definite. Therefore, the origin is a globally asymptotically stable equilibrium
point. Note that the globalness of this stability result also implies that the origin is the only

e is equilibrium point of the system. O
; REMARKS
point. Many Lyapunov functions may exist for the same system. For instance, if V is a

Lyapunov function for a given system, $o is
= p V a

where p is any strictly positive constant and o is any scalar (not necessarily an integer)
larger than 1. Indeed, the positive-definiteness of V implies that of V , the positive-
definiteness (or positive semi-definiteness) of —V implies that of —V/, and (the
radial unboundedness of V (if applicable) implies that of V.

More importantly, for a given system, specific choices of Lyapunov functions
may yield more precise results than others. Consider again the pendulum of Example
3.7. The function

_lar. T, oy a
ilarly, the V(X)—EO +§(9+9) +2(1—cosB)

is also a Lyapunov function for the system, because locally
V(x) =— (62 + 0sinB) < 0
1’s linear -§ .
ar system However, it is interesting to note that V is actually locally negative definite, and
O »:‘f therefore, this modified choice of V, without obvious physical meanmg allows the

asymptotic stability of the pendulum to be shown.
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¥+ %2~ 1|k3+x=sin%

For this system, we study, similarly to Example 3.14, the Lyapunov function

X
V=%5¢2 4 L(y— sin %) dy

This function has two minima, at x =+ 1; x=0, and a local maximum in x (a saddle point in the
state-space) at x = 0; % =0. As in Example 3.14, the time-derivative of V is (without calculations)
V=— |x2-1]x*
i.e, the virtual power "dissipated” by the system. Now
V=0 => x=0 or x=*1
Let us consider each of these cases:

x=0 = .'\E:Sin%—xio except if x=0 or x==%1

x=t1 = X=0

Thus, the invariant set theorem indicates that the system converges globally to (x=1;¥=0) ¢
(x=-1;x=0),0orto (x=0; %= 0). The first two of these equilibrium points are stable, since the
correspond to local mimina of V' (note again that linearization is inconclusive about the
stability). By contrast, the equilibrium point (x = 0: ¥=0) is unstable, as can be shown froi
linearization (¥ = (7/2 — 1) x), or simply by noticing that because that point is a local maximum (
V along the x axis, any small deviation in the x direction will drive the trajectory away from it. [

As noticed earlier, several Lyapunov functions may exist for a given systen
and therefore several associated invariant sets may be derived. The system the
converges to the (necessarily non-empty) intersection of the invariant sets M; , whic
may give a more precise result than that obtained from any of the Lyapunov functior
taken separately. Equivalently, one can notice that the sum of two Lyapunc
functions for a given system is also a Lyapunov function, whose set R is tt
intersection of the individual sets R; .

3.5 System Analysis Based on Lyapunov’s Direct Method

With so many theorems and so many examples presented in the last section, one m
feel confident enough to attack practical nonlinear control problems. However,
theorems all make a basic assumption: an explicit Lyapunov function i1s someho
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known. The question is therefore how to find a Lyapunov function for a specific
problem. Yet, there is no general way of finding Lyapunov functions for nonlinear
systems. This is a fundamental drawback of the direct method. Therefore, faced with
specific systems, one has to use experience, intuition, and physical insights to search
for an appropriate Lyapunov function. In this section, we discuss a number of
techniques which can facilitate the otherwise blind search of Lyapunov functions.

We first show that, not surprisingly, Lyapunov functions can be systematically
found to describe stable linear systems. Next, we discuss two of many mathematical
methods that may be used to help finding a Lyapunov function for a given nonlinear
system. We then consider the use of physical insights, which, when applicable,
represents by far the most powerful and elegant way of approaching the problem, and
is closest in spirit to the original intuition underlying the direct method. Finally, we
discuss the use of Lyapunov functions in transient performance analysis.

3.5.1 Lyapunov Analysis of Linear Time-Invariant Systems

Stability analysis for linear time-invariant systems is well known. It is interesting,
however, to develop Lyapunov functions for such systems. First, this allows us to
describe both linear and nonlinear systems using a common language, allowing shared
insights between the two classes. Second, as we shall detail later on, Lyapunov
functions are "additive", like energy. In ‘other words, Lyapunov functions for
combinations of subsystems may be derived by adding the Lyapunov functions of the
subsystems. Since nonlinear control systems may include linear components (whether
in plant or in controller), we should be able to describe linear systems in the Lyapunov
formalism.

We first review some basic results on matrix algebra, since the development of
Lyapunov functions for linear systems will make extensive use of quadratic forms.

SYMMETRIC, SKEW-SYMMETRIC, AND POSITIVE DEFINITE
MATRICES

Definition 3.10 A square matrix M is symmetric if M= MT (in other words, if
Vi,j Mi=M;). A square matrix M is skew-symmetric if M=-MT (ie, if

An interesting fact is that any square n X n matrix M can be represented as the
sum of a symmetric matrix and a skew-symmetric matrix. This can be shown by the
following decomposition

4030
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_M+MT M-MT

M="""
2 2

where the first term on the left side is symmetric and the second term is skew-
symimetric.

Another interesting fact is that the quadratic function associated with a skew-
symmetric matrix is always zero. Specifically, let M be a nxn skew-symmetric matrix ,
and x an arbitrary nx1 vector. Then the definition of a skew-symmetric matrix implies i
that

xIMx =—xI'MTx

Since xTMTx is a scalar, the left-hand side of the above equation can be replaced by
its transpose. Therefore,

xI'Mx=-xMx
This shows that
Vx, xIMx=0 (3.16)

In designing some tracking control systems for robots, for instance, this fact is very
useful because it can simplify the control law, as we shall see in chapter 9.

Actually, property (3.16) is a necessary and sufficient condition for a matrix M
to be skew-symmetric. This can be easily seen by applying (3.16) to the basis vectors

el‘:

[Vi, eTMe;=0] => [Vi M;=0]

and

[V GJ), (e+e)My(e;+e)=0] => [ Y (i), M+ M+ Mj+ M;=0]
which, using the first result, implies that
v (l’.]) 3 Mﬂz _MU
In our later analysis of linear systems, we will often use quadratic functions of
the form xI Mx as Lyapunov function candidates. In view of the above, each quadratic
function of this form, whether M is symmetric or not, is always equal to a quadratic
function with a symmetric matrix. Thus, in considering quadratic functions of the form

x’Mx as Lyapunov function candidates, one can always assume, without loss of
generality, that M is symmetric.
”
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We are now in a position to introduce the important concept of positive definite
matrices.

Definition 3.11 A square n x n matrix M is positive definite (p.d.) if
xz0 => xIMx>0

In other words, a matrix M is positive definite if the quadratic function x’Mx is a
positive definite function. This definition implies that to every positive definite matrix
is associated a positive definite function. Obviously, the converse is not true.

Geometrically, the definition of positive-definiteness can be interpreted as
simply saying that the angle between a vector x and its image Mx is always less than
909 (Figure 3.18).

Mx
)
o lo | < 90° : L .
; - Figure 3.18 : Geometric interpretation of
- X the positive-definiteness of a matrix M
I
g ~ A necessary condition for a square matrix M to be p.d. is that its diagonal

elements be strictly positive, as can be seen by applying the above definition to the
basis vectors. A famous matrix algebra result called Sylvester’s theorem shows that,
assuming that M is symmetric, a necessary and sufficient condition for M to be p.d. s
that its principal minors (i.e., My, My My — My Myo, ... ,det M ) all be strictly
positive; or, equivalently, that all its eigenvalues be strictly positive. In particular, a
p.d. matrix is always invertible, because the above implies that its determinant is non-
zero.

A positive definite matrix M can always be decomposed as
M =UTAU (3.17)

where U is a matrix of eigenvectors and satisfies UTU =1, and A is a diagonal matrix
containing the eigenvalues of the matrix M. Let Apin(M) denote the smallest
eigenvalue of M and A, (M) the largest. Then, it follows from (3.17) that

Ay [IXI12 < XTMX < X, (VD[]




02/01/99 MON 19:21 FAX 213 7405687 USC Neuroscience Program #1033

80 Fundamentals of Lyapunov Theory Chap. 3
This is due to the following three facts:

o xTMx =xTUTAUx =27 Az, where Ux=12

o XpisMMI < A < Xy (M) T

o 277 =|x|?

The concepts of positive semi-definite, negative definite, and negative semi-
definite can be defined similarly. For instance, a square z X n matrix M is said to be
positive semi-definite ( p.s.d.) if

Vx,xIMx=0

By continuity, necessary and sufficient conditions for positive semi-definiteness are
obtained by substituting "positive or zero" to "strictly positive” in the above conditions
for positive definiteness. Similarly, a p.s.d. matrix is invertible only if it is actually
p.d. Examples of p.s.d. matrices are n X n matrices of the form M = N7N where Nis a
m X n matrix. Indeed,

vVx, x_T NIN x = (Nx)T (Nx) >0
A matrix inequality of the form
M, >M,
(where My and M, are square matrices of the same dimension) means that

M]“Mz >0

i.e., that the matrix M, —M, is positive definite. Similar notations apply to the
concepts of positive semi-definiteness, negative definiteness, and negative semi-
definiteness.

A time-varying matrix M(¢) is uniformly positive definite if
Jo>0 V20, M=ol

. A similar definition applies for uniform negative-definiteness of a time-varying
i matrix.

LYAPUNOV FUNCTIONS FOR LINEAR TIME-INVARIANT SYSTEMS

Given a linear system of the form X=Ax , let us consider a quadratic Lyapunov
function candidate

V=xPx

_—
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where P is a given symmetric positive definite matrix. Differentiating the positive
definite function V along the system trajectory yields another quadratic form

V=xTPx+xPx =— xIQx (3.18)

where

ATP+PA=-Q (3.19)

The question, thus, is to determine whether the symmetric matrix Q defined by the so-
called Lyapunov equation (3.19) above, is itself p.d. If this is the case, then V satisfies
the conditions of the basic theorem of section 3.4, and the origin is globally
asymptotically stable. However, this "natural" approach may lead to inconclusive
result, i.e., Q may be not positive definite even for stable systems.

Example 3.17: Consider a second-order linear system whose A matrix is

0 4
-8 —12

A=

If we take P =1, then

0 -4

-0=PA+ATP=
-4 -24

The matrix Q is not positive definite, Therefore, no conclusion can be drawn from the Lyapunov
function on whether the system is stable or not. O

A more useful way of studying a given linear system using scalar quadratic
functions is, instead, to derive a positive definite matrix P from a given positive
definite matrix Q, i.e.,

e choose a positive definite matrix Q
e solve for P from the Lyapunov equation (3.19)
e check whether P is p.d

If P is p.d., then (1/2)x’ Px is a Lyapunov function for the linear system and global
asymptotical stability is guaranteed. Unlike the previous approach of going from a
given P to a matrix Q, this technique of going from a given Q to a matrix P always
leads to conclusive results for stable linear systems, as seen from the following
theorem.
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Theorem 3.6 A necessary and sufficient condition for a LTI system x=AX to be
strictly stable is that, for any symmetric p.d. matrix Q, the unique matrix P solution of
the Lyapunov equation (3.19) be symmetric positive definirte.

Proof: The above discussion shows that the condition is sufficient, thus we only need to show
that it is also necessary. We first show that given any symmetric p.d. matrix Q, there exists a
symmetric p.d. matrix P verifying (3.19). We then show that for a given Q, the matrix P is
actually unique.

Let Q be a given symmetric positive definite matrix, and let
(e ]
P= J' exp(AT 1) Q exp(A 1) dt (3.20)
0

One can easily show that this integral exists if and only if A is strictly stable. Also note that the
matrix P thus defined is symmetric and positive definite, since Q is. Furthermore, we have

-Q = J. dl exp(AT HQexp(An]
=0

= J' [ AT exp(AT 1) Q exp(A 1) + exp(AT 1) Q exp(A 1) A ] dt
=0

=ATP+PA

where the first equality comes from the stability of A (which implies that exp (A°°) = 0), the
second from differentiating the exponentials explicitly, and the third from the fact that A i
constant and therefore can be taken out of the integrals.

The uniqueness of P can be verified similarly by noting that another solution P, of the
Lyapunov equation would necessarily verify

(o]

P = -—J dl exp(AT P exp(A D]
t=0

(=]

= [ exp(ATn (ATP + P A)exp(An]dr
t=0

[en)
= J' exp(AT HQexp(Andt =P
0

An alternate proof of uniqueness is the elegant original proof given by Lyapunov, whic
makes direct use of fundamental algebra results. The Lyapunov equation (3.19) can t
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to be interpreted as defining a linear map from the n* components of the matrix P to the n? components
on of ; of the matrix Q, where P and Q are arbitrary (not necessarily symmetric p.d.) square matrices.
Since (3.20) actually shows the existence of a solution P for any square matrix Q, the range of
show this linear map is full, and therefore its null-space is reduced to 0. Thus, for any Q, the solution P
. is unique. ]
Kists a
x Pis The above theorem shows that any positive definite matrix Q can be used to
determine the stability of a linear system. A simple choice of Q is the identity matrix.
Example 3.18: Consider again the second-order system of Example 3.17. Let us take Q=1Iand
denote P by
(3.20)
4
1 p=| P11 P12
hat the - § Py P2
where, due to the symmetry of P, p5; = p;,. Then the Lyapunov equation is
pu P || O 4 10 -8 | pip P2 | |71 O
P12 Pr -8 =12 4 =12 plq P 0 -1
whose solution is
P11 =3 Pa=pp=1
0), the
i A s The corresponding matrix
5 1
of the ! P=
4 11
is positive definite, and therefore the linear system is globally asymptotically stable. Note that we
have solved for P directly, without using the more cumbersome expression (3.20). O
Even though the choice Q =1 is motivated by computational simplicity, it has a
surprising property: the resulting Lyapunov analysis allows us to get the best estimate
of the state convergence rate, as we shall see in section 3.5.5.
3.5.2 Krasovskii’s Method
, which : Let us now come back to the problem of finding Lyapunov functions for general

can be nonlinear systems. Krasovskii’s method suggests a simple form of Lyapunov function




