
Tornado Quick-Start
Workshop

Wind River Systems

28.3.2000

Objectives

! Define the different parts of the Tornado Architecture.

! State essential characteristics of the VxWorks
operating system, and the purposes of important
VxWorks libraries.

! Boot a VxWorks target; cross-compile code and
download it to the target; start and make simple use of
Tornado tools.

! Describe the services provided by optional
development tools and OS components.

! State where additional help and documentation is
available.

28.3.2000

Contents

! Tornado Architecture

! Reconfiguring VxWorks

! VxWorks Basics

! VxWorks Libraries and Facilities

! VxWorks OS Extensions

! Using Tornado

! Optional Development Tools

! Help and Documentation

Tornado Quick-Start
Workshop

Tornado Architecture

28.3.2000

Subdividing Tornado

X.c
X.cpp

X.s
Makefile

GNU

X.o
X.out

vxWorks

CrossWind

WindSh

Browser

3rd Party

Tornado
Tools VxWorks

RTOS

WDB
Agent

Target
Server X

text
data
bss

Development Host(s)

Target

28.3.2000

Cross-Development
! Typical scenario:

1. Boot target. 4. Download object module.

2. Attach target server. 5. Test & Debug.

3. Edit & compile. 6. Return to 3 or 1 as necessary!

Ethernet

RS-232

Development Host VxWorks Target

28.3.2000

Target Server / WDB Agent

VxWorks

WDB

Application

Target
Server

WDB Protocol

WindSh

CrossWind

Browser

WTX Protocol

Development Host Target

(Ethernet, serial,
 netrom, custom)

WTX = Wind River Tool eXchange WDB = Wind DeBug

3rd Party

28.3.2000

Auxiliary Host Processes

! The Registry
– Manages a list of target servers. Must

be running before you launch a target
server.

– Provides information tools need to contact a target server.

– Prevents two target servers from attaching to the same target.

! Wind License Manager Daemon
– Floating license manager daemon allocates a finite number

of seats to users of target servers.

– Each seat allows one user on one networked host to create
any number of target servers.

Target servers in
registry listed here.

28.3.2000

VxWorks RTOS

Scheduling &
System Clock

Facilities

Synchronization
& Intertask
Communication

Mutual
Exclusion

I/O
system

File
Systems

Memory
Management

Networking
Support

Device
Support

. . .

28.3.2000

Board Support Package

! Most of VxWorks is independent of the particular
target board used.

! The board-specific code for initializing and managing
a boardís hardware is called the BSP. The BSP
provides VxWorks with standard hardware interface
functions which allow it to run on a board.

! The primary BSP source file, sysLib.c, lives in the
BSP directory target/config/bspName. This is also the
directory in which VxWorks may be reconfigured and
rebuilt.

28.3.2000

Tornado Directory Structure

wind

target config all
bspNameh

lib

src

share

host host-os

resource

bin

man

man

man

Tornado Quick-Start
Workshop

Reconfiguring VxWorks

28.3.2000

Scaling & Configuration

! Configuring VxWorks involves
ñ Specifying which VxWorks facilities will be included

(scaling VxWorks).
" May be done with the WindConfig tool, or by editing files.

ñ Specifying additional constants needed by some modules.
" Requires editing files.

! The configuration of the VxWorks images you build is
governed by information from three sources:
ñ target/config/all/configAll.h default base configuration

ñ target/config/bsp/config.h board specific configuration

ñ The WindConfig tool, if used.

28.3.2000

configAll.h and config.h

! target/config/all/configAll.h specifies a default, or base
configuration which applies to all boards. WRS
discourages modifying this file.

! target/config/bsp/config.h extends and/or overrides the
defaults specified in configAll.h for the particular
board bsp. Modify this file to change the VxWorks
image for this board.

...
#include ìconfigAll.hî
#include ìbsp.hî

/* Override defaults here */
#undef NUM_FILES
#define NUM_FILES (80)
...
/* Added by WindConfig */
#include ìconfigdb.hî

config.h

28.3.2000

WindConfig

1. Specify BSP.

Overrides scaling choices made in configAll.h and config.h.

2. Choose an existing
 configuration, or
 name a new one.2.

3. Specify additional
 modules to be linked
 with VxWorks.

4. Edit configuration.

5. Save configuration.
5.

6. Construct configdb.h
 and modify config.h.

6.

7. Rebuild vxWorks.

7.

28.3.2000

Standard Images
Types of
Images

VxWorks
Tornado

VxWorks
Standalone

Boot Program

ROMable
compressed

_ vxWorks.st_rom bootrom

ROMable
uncompressed

vxWorks_rom _ bootrom_uncmp

ROM
resident

vxWorks.res_rom_nosym vxWorks.res_rom bootrom_res

Downloadable
uncompressed

vxWorks vxWorks.st _

ï Not all BSPs will support all of these images. Some BSPs support
addititional images.

ï Standalone VxWorks has a target shell and built-in symbol table.
Network support is included but not initialized.

ï The file target/h/make/rules.bsp has the make rules for building
these images.

Tornado Quick-Start
Workshop

VxWorks Basics

28.3.2000

VxWorks

! VxWorks is a multitasking operating system optimized
for real-time and embedded applications.
ñ Low interrupt and context switch latency.

ñ Low ìsystem callî overhead.

ñ Scalable.

ñ Portable: well defined BSP.

! VxWorks consists of core kernel facilities and
peripheral facilities which depend on the kernel.
ñ Loosely, kernel functions are those which can directly

change the states of tasks.

28.3.2000

What is a VxWorks Task?

! A task is a context of execution. It has:
ñ a program counter (current location of execution).

ñ private copies of CPU registers.

ñ a stack for local variables, function arguments, and function
call chain information.

! As VxWorks is a uniprocessor system, only one task is
actually executing at any given time.
ñ When a task is not executing, its context is stored in its Task

Control Block (TCB) and stack. The TCB is the data
structure which the kernel uses to represent and control the
task.

28.3.2000

! All tasks execute in the same address space:

! All tasks execute at highest CPU privilege level.

Performance Optimizations

static int x;

void fooSet (int arg)
 {
 x = arg;
 }

text

data

bss

RAM fooLib.c
tTaskA

fooSet(4)

tTaskB
fooSet(99)

28.3.2000

Task State Transition Diagram

PENDED DELAYED

SUSPENDED
PENDED &

SUSPENDED
DELAYED &
SUSPENDED

READY
EXEC.

28.3.2000

Preemptive Priority Scheduling

(On this board, INT 6 is the system clock, INT 3 is the network interrupt.)

At any time, the
highest priority
task ready to run,
runs!

A higher priority
task which is made
ready preempts the
executing task.

Interrupts preempt
any task.

28.3.2000

Context Switches

! When one task stops executing and another task starts,
a context switch has occurred.

! Context switches occur:
ñ If a higher priority task becomes ready to run

" made ready by executing task.

" made ready in an interrupt, or times out on a blocking call.

ñ If the executing task makes a blocking kernel call (moving
into a pended, delayed, or suspended state).

! What happens:
ñ CPU registers for outgoing task stored in its TCB.

ñ CPU registers for incoming task retrieved from its TCB.

28.3.2000

Interrupt Service Routines

! An ISR is a piece of code which is connected to a
particular hardware interrupt. When the hardware
interrupt occurs, the ISR runs.

! ISRís have an effective priority higher than any task.

! Whether and how ISRs can preempt each other is
board dependent.

! An ISR has no permanent context; it is NOT a task.
ñ An ISR may call only a limited set of VxWorks functions.

ñ Basic rule of thumb: If a routine could block, an ISR cannot
call it.

Tornado Quick-Start
Workshop

VxWorks Libraries and
Facilities

28.3.2000

VxWorks Libraries / Modules

! VxWorks routines are grouped into libraries (modules
containing code and data).

! Many of these libraries are optional; VxWorks may be
built with or without them.

! Each library has one or more header files. Examples:
Module Routine Header files

taskLib taskSpawn() taskLib.h

semLib semTake() semLib.h

memPartLib malloc() stdlib.h

sockLib sendto() sys/types.h, sys/socket.h, sockLib.h

! Reference manual lists header files for each library.

28.3.2000

taskLib

! taskLib contains the kernel functions for creating,
destroying, starting and stopping tasks.

! Example routines:
ñ To create and start a new task:

int taskSpawn (name, priority, options, stackSize,

entryPt, arg0, Ö , arg9)

ñ To delay the executing task for a certain number of system
clock ticks:

STATUS taskDelay (ticks)

28.3.2000

Semaphores

! Semaphores are VxWorks kernel objects which allow
blocking and unblocking of tasks, to coordinate tasksí
actions with those of other tasks and with external
events.

! VxWorks provides three varieties of semaphores:
ñ Binary (synchronization) semaphores.

ñ Counting semaphores.

ñ Mutex (mutual exclusion) semaphores.

! Each type of semaphore is intended primarily for a
particular kind of programming problem.

28.3.2000

Binary Semaphores

! Binary semaphores allow tasks to wait for an event
without taking up CPU time polling.

! The event might be an interrupt, or the action of
another task.

! Usage:
ñ Create the binary semaphore using semBCreate()

ñ A task which wishes to wait for the event calls semTake() to
block until the event occurs (or a specified time-out expires).

ñ Whichever ISR or task detects or creates the event calls
semGive() to allow a waiting task to proceed.

28.3.2000

Mutex Semaphores

! Mutex semaphores are used when multiple tasks share
a resource (data structure, file, hardware).

! When used correctly, mutex semaphores prevent
multiple tasks from accessing the resource at the same
time, and so corrupting it.

! Usage:
ñ Create mutex for the resource with semMCreate().

ñ A task wanting to use the resource first calls semTake() to
block until the resource is available (or time-out expires).

ñ When done with the resource, a task calls semGive() to allow
other tasks to use the resource.

28.3.2000

Counting Semaphores

! Binary semaphores keep track of whether or not an
event has occurred, but not how many times the event
has occurred (since the last time the event was
serviced).

! Counting semaphores keep a count of how many times
the event has occurred, but not been serviced.

! May be used to ensure that the event is serviced as
many times as it occurs.

! May also be used to maintain an atomic count of
multiple equivalent available resources.

28.3.2000

Message Queues

! FIFO buffers of bounded length messages.

! Synchronization and mutual exclusion built in.
ñ A task pends reading from empty queue, or writing

to full queue. A time-out may be specified.

Four
 Score

and

seven

Four
 Score

and

seven

Four
 Score

and

sevenFour
 Score

and

seven

tProducer

msgQSend (Ö)

tConsumer

msgQReceive(...)

28.3.2000

Watchdogs

! Watchdogs allow a routine to run after a specified
delay, as part of the system clock tick ISR.

! Used for high-reliability periodic polling, and
deadline-miss detection.

Periodic Execution

wd = wdCreate();

wdStart (wd, period,
 myWdISR, arg);
...
void myWdISR (int param)
 {
 wdStart (wd, period,
 myWdISR, param);
 doIt (param);
 }

Deadline-miss Recovery

wd = wdCreate();
FOREVER
 {
 wdStart (wd, deadline,
 panicWd, arg);
 doWork();
 }
...
void panicWd (int param)
 { /* Handle deadline miss */
 }

28.3.2000

Signals

! VxWorks implements reliable POSIX signals.

! Used in two ways:
ñ To notify a task asynchronously of some event.

ñ In exception handling.

! If a task commits an exception, it is suspended unless it
has installed a signal handler for the corresponding
signal.
ñ If it has installed the handler, the handler may attempt to

recover from the exception by restarting the task, or by using
longjmp() to return to a state previously saved by calling
setjmp().

28.3.2000

VxWorks I/O System

! Provides a consistent, familiar interface to various I/O
devices and file systems.
ñ Open a file/device by name with open().

ñ Use the integer file descriptor returned from open() in later
calls to read(), write(), and ioctl().

ñ File descriptors may be shared among multiple tasks.

ñ When all tasks are done with a file descriptor, have one task
call close() so that the file descriptor may be reused.

! Global or task-specific redirection of standard input,
standard output, and standard error is possible.

28.3.2000

Additional I/O Support

! VxWorks supports the Standard C buffered I/0 library
(ansiStdio, header file stdio.h):
ñ fopen(), fclose(), fread(), fwrite(), getc(), putc(), etc.

! Built on top of VxWorks Basic I/O system.

! Since the basic I/O system calls reach driver level very
quickly (no protection boundary crossing overhead),
buffered I/O may be less important.

! VxWorks implements printf() in a separate library
fioLib as an unbuffered call. This allows formatted
output without support for buffering.

! C++ Iostreams library provided.

28.3.2000

Local File Systems

! VxWorks provides an implementation of the DOS file
system, dosFsLib.

! Compatible with MS-DOS up to release 6.2.

! File system may be used with local block devices such
as SCSI, ATA, or floppy disk drives; or RAM disks.

! To access the raw block device via the I/O system,
rawFsLib may be used.

! The module tapeFsLib may be used to access a SCSI
sequential device (tape drive).

28.3.2000

VxWorks Network Support

! Network interfaces:
ñ Ethernet

ñ PPP/SLIP/CSLIP

ñ Shared Memory Network (VME backplane)

ñ Custom

! Network Programming APIís:
ñ 4.3 BSD sockets.

ñ zbuf (Zero-copy TCP/UDP) sockets.

ñ Sun RPC.

28.3.2000

Network File Access

! VxWorks can act as client or server for remote file
access:

Client Server

VxWorks Remote Host

ClientServer

VxWorks Remote Host

Client: VxWorks target accesses
files on remote host via NFS, FTP
or RSH.

ï NFS nfsDrv
ï FTP or RSH netDrv, ftpLib

Server: Remote host accesses files
local to VxWorks target via NFS or
FTP.

ï NFS nfsdLib, mountLib
ï FTP ftpdLib

Tornado Quick-Start
Workshop

VxWorks OS Extensions

28.3.2000

Extending VxWorks

! These optional products provide target-side capabilities
not present in the core VxWorks product.

ñ VxVMI Virtual Memory Support

ñ VxMP Multiprocessing across VMEbus

ñ Wind Foundation C++ libraries for VxWorks
Classes

28.3.2000

VxVMI

! Provides an architecture-independent interface to the
Memory Management Unit (MMU).

! Automatic write-protection of program text segments
and the interrupt vector table may be enabled.

! Private virtual memory contexts may be established.
ñ Context may be accessed by a single task, by a group of

tasks, or only via particular interface functions.

ñ User is responsible for managing and switching between
contexts. Example code available in Programmerís Guide.

ñ Intended primarily for data protection; does not completely
isolate or protect tasks from each other.

28.3.2000

VxMP

! VxMP (also called shared memory objects) provides
MultiProcessing support for VxWorks targets on a
VME bus. It allows one to synchronize actions or send
messages between different CPUís on the bus.

! Shared memory objects provided:
ñ semaphores (binary & counting)

ñ message queues

ñ memory partitions

! Name database available for publishing and looking up
individual shared memory objects by name.

28.3.2000

Wind Foundation Classes

! Provides three libraries to aid C++ development in
VxWorks:

! VxWorks Wrapper Class Library
ñ Thin C++ interface to VxWorks objects and facilities

! Tools.h++ library from Rogue Wave Software
ñ Collection classes, template based classes, persistent store

facility, B-trees, strings, etc.

! Booch Components Library
ñ Common Data structures (graphs, rings, queues, stacks, etc.)

ñ Common algorithms (date/time, searching, sorting, etc.)

Tornado Quick-Start
Workshop

Using Tornado

28.3.2000

Booting a Target

! Hardware must first be configured:
ñ VxWorks Boot ROMs replace board manufacturerís ROMs.

ñ Jumpers (etc.) set as described in target/config/bsp/target.txt.

! VxWorks Boot ROMs enable:
ñ Setting boot parameters via a serial connection.

ñ Downloading & executing VxWorks image.

! Booting scenarios:
ethernet shared memory network

serial (PPP/SLIP) local disk

BOOTP / TFTP

28.3.2000

Boot Parameters
Press any key to stop auto-boot...

 3

[VxWorks Boot]: c
'.' = clear field; '-' = go to previous field; ^D = quit

boot device : ei
processor number : 0
host name : sylvan
file name : /usr/wind/target/config/mv162/vxWorks
inet on ethernet (e) : 167.21.32.168
inet on backplane (b):

host inet (h) : 167.21.32.17
gateway inet (g) :

user (u) : robinh
ftp password (pw) (blank = use rsh): .
flags (f) : 0x8
target name (tn) : ash
startup script (s) :

other (o) :

28.3.2000

A Successful Boot!
[VxWorks Boot]: @

< boot parameters printed >
Attaching network interface ei0... done.

Attaching network interface lo0... done.

Loading... 335336 + 28936 + 33948 text + data + bss

Starting at 0x20000...

downloaded image runs now

Attaching network interface ei0... done.

Attaching network interface lo0... done.

NFS client support not included.

 VxWorks

Copyright 1984-1996 Wind River Systems, Inc.

 CPU: Motorola MVME162

 VxWorks: 5.3.1

 BSP version: 1.1/4

 Creation date: Sep 28 1997

 WDB: Ready.

28.3.2000

Launching a Target Server

Use Target => Create
to configure and
launch a new target
server. The configure
button is a
shortcut.

With either method,
the Create Target
Server dialog will
appear.

Start the Tornado Launcher from the UNIX command line as follows:
% launch &

28.3.2000

Configuring a Target Server
Enter target's IP
address or equivalent
host name.

Name this target
server configuration.

You may check
Virtual Console to
create a window to
which target I/O may
be directed. Useful when
developing remotely.

 Core file is the
 path the target

server uses to access the object module for the VxWorks
image on the target. The default is the path specified in
the boot parameters.

28.3.2000

Configuring a Target Server
Specify Verbose to
log diagnostic
output.

Launch starts the target
server and saves its
configuration.

Clicking Locked
keeps other users
from accessing
the target server.

The default back end (wdbrpc)
uses a shared network
connection between
the target server
and WDB agent.

As you fill in
the dialog options,
the launch command line
is automatically constructed.

28.3.2000

A Successful Launch!
The Logfile Viewer displays
diagnostic information about:

ï Acquiring a license
ï Connecting to the target
ï WTX protocol errors
ï Lost connection to target
ï Target reboots

28.3.2000

Starting Tornado Tools

1. Choose a target
server from the
registry list.

2. Information on
that target server
and the attached
target is displayed.

3. Click on a tool
icon.

28.3.2000

CrossWind
A graphical, source-
level debugger built
on GDB from GNU.

Provides task level
and system level
debugging.

Use either the
graphical or the
command line
interface.

28.3.2000

WindSh - The Tornado Shell
! A C expression interpreter and an associated Tcl interpreter.

! Download code to the target; spawn tasks to execute functions;
modify existing variables, or create new ones.

28.3.2000

The Browser
Graphical tool which lets you
monitor the state of the target,
and display information on
particular VxWorks system
objects.

Information displayed may be
updated on demand or
periodically .

28.3.2000

Compiling Code

! Compile individual source files using the appropriate
cross-compiler and flags. Example:
ñ cc68k -c -I${WIND_BASE}/target/h -fno-builtin -nostdinc

-DCPU=MC68040 -Wall -O myProg.c

ñ See the Programmerís Guide appendix for your architecture.

! For more complicated builds, create your own
Makefile.
ñ You may imitate the structure of VxWorks BSP makefiles,

which include make definitions and rules from the
target/h/make directory. You may even extend the BSP
makefiles to build your own application.

28.3.2000

Downloading Object Modules

! Object modules may be downloaded dynamically and
linked with modules already present on the target.
ñ You will be notified of any unresolved symbols in the

downloaded module.

ñ Unresolved symbols on the target are not resolved upon later
loading other modules. Resolving mutual dependencies
among modules requires host-side incremental linking.

! To download from the Wind shell:
→ ld < myProg.o

! File => Download also loads debugging information
used by CrossWind.

28.3.2000

Using the Tornado Shell

! Evaluate C expressions including Target functions:
→ len = msgQReceive (msgQId, buf, size, 0)
new symbol "len" added to symbol table
len = 0xb7f1c: value = 10 = 0xa

→ printf ("%s\n", buf)

value = 9 = 0x9

! Spawn new tasks to execute repetitive code:
→ sp (myServerTask, msgQId, "Whoops!\n")
task spawned: id = 3c2d6c, name = u0
value = 3943788 = 0x3c2d6c

! Other things you can do from the shell:
Download object code Display system objects
Assembly level debugging Automate testing with Tcl

More!

28.3.2000

WindSh Limitations

! Does not understand structures and arrays.

! Assumes expressions are of type int or double unless
typecasts used.

! C interpreter cannot handle looping or branching
constructs (if, while, for, switch, etc.).

! Function call argument limitations:
ñ 10 four-byte arguments (int, float, or pointer) passed to entry

point function for all tasks spawned.

ñ Different sized arguments (e.g. doubles) may often be passed
for architectures which expect arguments on the stack; this is
not always supported for architectures expecting such
arguments in registers.

28.3.2000

Symbolic Debugging

! For source-level debugging with CrossWind, modules
must be compiled with additional debug information:
ñ Specify the -g compiler flag. If using VxWorks makefiles,

you may do this by defining the make variable
ADDED_CFLAGS = -g or ADDED_C++FLAGS = -g .

! When started, CrossWind looks for debug information
for all the modules already on the target. It searches for
the object modules, and the corresponding source code,
in an ordered set of directories called the source path.

! Configure the source path with the GDB directory
command:
(gdb) directory dirname ...

28.3.2000

Debugging Tasks

! To download additional modules:
File => Download

! To create a new task to run a loaded function
(gdb) run myFunc arg1 Ö

ñ Arguments should be separated with spaces.

! To debug an already running task:
Targets => Attach Task

! To debug multiple tasks independently, you may start
multiple CrossWind sessions.

28.3.2000

CrossWind GUI
Set regular or temporary
breakpoints. Right-click on a line
to set a regular breakpoint.

Suspend execution .

 Step, Next (step over
function call), Continue, Finish
current subroutine, or just middle-
drag the execution point to a new
location.

Move Up or Down the stack to
view variables in other stack frames.

Display expressions in the command
panel

or separate windows .

28.3.2000

CrossWind Displays
!Application expressions

!CPU registers

!Stack call chain

These graphical displays are
updated whenever control
returns to the debugger.

Click on a pointer in a
display to display the object
pointed to.

28.3.2000

Task vs. System Debugging

! When debugging at task level, if the attached task hits
a breakpoint, only that task stops. The rest of VxWorks
continues to run.

! System level debugging allows debugging of ISRs, or
debugging before VxWorks has started. When any task
or ISR hits a breakpoint, VxWorks and the user
application stop cold, interrupts are locked out, and
control transfers to the external WDB agent.

! System level debugging requires an external WDB
agent configured for a polled-mode back end (e.g.
wdbserial or netrom).

28.3.2000

Browser Information

! Target Information

! Memory Usage (tools / application)

! Module Information (symbols)

! Object Information (particular system objects)

! Spy Chart (CPU utilization)

! Stack Check

! Tasks

Update Now Update Periodically Configure Browser

28.3.2000

Tcl - Tool Command Language

! Tcl is an interpreted scripting language, providing
ñ functions with arguments

ñ iteration and branching constructs

ñ variables of many types, represented as strings

! The Tornado tools may be customized using Tcl:
ñ Modify or extend the Graphical User Interface.

ñ Automate frequently used or repetitive procedures.

ñ Access the WTX protocol directly.

! Tcl source code for Tornado tools is provided in

host/resource/tcl.

Tornado Quick-Start
Workshop

Optional Development Tools

28.3.2000

WindPower Tools
! WindView

ñ Provides detailed graphical displays of the timing of system
and user events.

ñ Aids in detecting and diagnosing real-time programming
errors and system crashes.

! Stethoscope
ñ Collects and graphs time histories of user or system

variables.

ñ Additional utilities include an execution profiler and memory
pool monitoring.

! VxSim
ñ Lets you start VxWorks development

before hardware is ready.

28.3.2000

WindView
WindView instruments
the VxWorks kernel to
record information on
system (or user) events
as they occur. If a high
resolution timer (≈ 1µs)

is available, events are
assigned a timestamp.

This WindView graph
illustrates a deadlock
between tTaskHi and
tTaskLow, and also
shows task u5 exiting
(with help from the
task tExcTask).

28.3.2000

WindView Event Logging

! There are three levels of event logging:
ñ 1. Log only context switches.

ñ 2. Log task state changes also.

ñ 3. Log instrumented object events also.

! Higher logging levels provide more information, but
impose more overhead.

! Object instrumentation is flexible:
ñ Log information on specific objects, all objects of a class

(e.g. all semaphores), or objects created during a particular
time interval.

! Log user events by calling wvEvent().

28.3.2000

StethoScope
ï Graphically monitor system
or application variables.

ï Collect signal time-histories
flexibly and with low overhead.

ï Use utilities for execution
profiling and memory leak
detection.

28.3.2000

StethoScope

! Target module ScopeProbe collects time histories of
variables (signals) and uploads them to the host.
ñ Synchronous or asynchronous collection supported.

ñ Triggering on a signal by value/slope with +/- delay.

ñ Collection buffer uploaded to host by low priority task
tScopeLink.

! StethoScope host tools display histories graphically or
numerically for analysis. Also print, save to file, or
export buffers to analysis tools such as MATLAB.

! Control the data collection process from the host tools.
Specify at run time which signals to collect or display.

28.3.2000

VxSim

! VxSim is a port of VxWorks to run as a Unix process.
ñ True VxWorks preemptive multitasking implemented.

ñ No emulation of instructions; code compiled for hostís own
architecture.

! Allows development using Tornado to proceed before
actual hardware is available.
ñ Standard VxWorks facilities (Networking, I/O system, file

systems, etc.) are available.

ñ Tornado tools and WindView all work with simulated target.

! Most appropriate for portions of application not closely
tied to the hardware.

Tornado Quick-Start
Workshop

Help and Documentation

28.3.2000

Documentation Resources

! Tornado provides documentation on
ñ Product installation

ñ Customer Support

ñ VxWorks Programming

ñ Using Tornado

ñ GNU compiler toolkit & debugger

ñ Tornado API (WTX & WDB protocols, etc.)

! Documentation is provided in hard copy and online.

! Online documentation provided as hypertext and man
pages.

28.3.2000

Primary References

! Tornado Userís Guide (WindSurf)
ñ Booting; using Tornado tools; cross-development.

! VxWorks Programmerís Guide (WindSurf)
ñ Programming under VxWorks, including optional products.

! VxWorks Reference Manual (Online)
ñ Detailed reference on VxWorks libraries and functions.

! GNU Toolkit Userís Guide
ñ GNU compiler, assembler, linker, make, binary utilities...

! Debugging with GDB
ñ GNU documentation on the debugger underlying

CrossWind.

28.3.2000

Additional References

! Wind River Products Installation Guide, (WindSurf)
Tornado 1.0.1
ñ Installing Tornado; license manager configuration.

! Customer Support Userís Guide (WindSurf)
ñ Procedures and recommendations for making effective use of

Wind River Customer Support.

! Tornado API Guide (Mostly online)
ñ WTX / WDB Protocols; customizing or writing Tornado

Tools; writing a custom Target Server back-end.

! WindView for Tornado Userís Guide
ñ Using the WindView optional product.

28.3.2000

Customer Support

! Requires a maintenance contract.

! Provides help on:
ñ Installation problems.

ñ WRS software, documentation, and service errors.

ñ Understanding WRS product features & functionality.

! WindSurf web pages provide:
1. Interactive search engine. 2. Known problems list. 3. FAQ

4. Patches. 5. Document updates.

! Designate a primary and secondary technical contact at
your site to interact with WRS Customer Support.

28.3.2000

Wind River Users Group

! An active group for users of VxWorks
and other Wind River products.
ñ News group: comp.os.vxworks

ñ Email exploder

ñ Software archive

ñ Meetings

! Email to inquiries@wrs.com for information on
becoming a member.

! See also the WRS web page, http://www.wrs.com

28.3.2000

Wind River Training

! Want more information? Wind River Systems
Customer Training provides the following courses:
ñ Tornado Training Workshop (VxWorks)

" More in-depth information on Tornado Tools and VxWorks.
Recommended solutions to common real-time programming
problems. Hands-on laboratory practice applying techniques learned
in lectures.

ñ Device Driver Workshop (VxWorks)
" VME bus access and interrupt handling. Writing standard and non-

standard VxWorks device drivers. VxWorks I/0 system internals.
Extensive laboratory practice.

ñ Tornado BSP Porting Workshop (VxWorks)
" Porting VxWorks to custom target hardware.

