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1 Model

Given we have a training dataset D = {yi,xi}ﬁil that consists of a scalar output y; and
d-dimensional inputs x; (a d by 1 vector) for each of the N data samples, the model for high-
dimensional Bayesian linear regression with input noise consists of the following distributions:

yi|z; ~ Normal (1TZ7;, wy)
Zim |wzm7 tim ~ Normal (wzmtimy 1/sz)
Tim |wzm7 tim ~ Normal (wwmtima wavm)
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where 1 is a d by 1 vector of ones. We can use the variational factorial assumption that the pos-

terior over the unknown variables 0 = {o, w,, w,, Z, T}, Q(0), factorizes as Q(a)Q(w,)Q(w4)Q(Z, T),
where Z and T are diagonal matrices with diagonal vectors of z and t, respectively. The com-

plete log evidence is:

log p(y, 01X; ¢) = Zlogp vilzi) + Z Z 108 P(Zim W2 tim) + Z Z 108 P(&im [Wam, tim)
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where ¢ are the point-estimated parameters ¢ = {1y, 1., 1%, }. The EM update equations can
now be derived using standard manipulations of Normal and Gamma distributions.



2 EM Update Equations

The final EM update equations are listed below:
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where (A), (W

(Wo), ¥, ¥, X, are diagonal matrices with diagonal vectors of (),

)
(W2), (Wa), 2, e, 0y, respectively; and aao = bao = 10~31. Note that the diagonal matrices



(WIW.) and (WI'W,,) have diagonal vectors each composed of elements (w?,,) and (w2, ),
respectively.

3 Monitoring the Incomplete Log Likelihood

To know when to stop iterating through the EM algorithm above, we should monitor the
incomplete log likelihood and stop when the value appears to have converged. To calculate
the incomplete log likelihood, we need to integrate out the variables o, w,, w;, Z, T from the
complete log likelihood expression. But since the calculation of the true posterior distribution
Q(0) is intractable, we cannot determine the true incomplete log likelihood. Hence, for the
purpose of monitoring the incomplete log likelihood in the EM algorithm, we can monitor the
lower bound of the incomplete log likelihood instead.

In the derivation of the EM algorithm, we reached an estimate of Q(6), where 0 = {a, w,, w4, Z, T},
to be Q()Q(W,)Q(W.)Q(Z, T). The lower bound to the incomplete log likelihood, where

¢ = {%,%,%} is:
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— (log p(y, 01X; 6)) o0y — / Q(0) log Q(0)d6
And this simplifies to:
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4 Inferring the Regression Coefficient

Once the EM algorithm has converged and we have the final values for the unknown variables
and point-estimated parameters, we still need to infer what the regression coefficient if we want
to make predictions.

Given a noiseless test input t?, we would like to predict what the corresponding noiseless output

y? is, and we can do this since (y9[t4) = bT t9, where:
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