
Learning an Outlier-Robust Kalman Filter: A

Summary

Jo-Anne Ting

joanneti@usc.edu

January 8, 2008

1 The Kalman filter

Given observed data z1:N and hidden states θ1:N over N time steps, the Kalman filter is a
linear-Guassian state-space model and can be written as follows:

zk = Cθk + vk

θk = Aθk−1 + rk

(1)

where A ∈ ℜd2×d2 is the state transition matrix, C ∈ ℜd1×d2 is the output matrix, and
vk ∈ ℜd1×1 and rk ∈ ℜd2×1 are the observation and state noise vectors, respectively, at
timestep k. Note that:

vk ∼ N (0,R)

rk ∼ N (0,Q)

where R and Q are diagonal covariances for the observation noise and state noise. The Kalman
filter propagation and update equations are, for k = 1, ..., N :

Propagation:

θ
′

k = A 〈θk−1〉 (2)

Σ′

k = AΣk−1A
T + Q (3)

Update:

S′

k =
(

CΣ′

kC
T + R

)−1

(4)

K ′

k = Σ′

kC
TS′

k (5)

〈θk〉 = θ
′

k + K ′

k

(

zk − Cθ
′

k

)

(6)

Σk = (I− K ′

kC)Σ′

k (7)

where 〈θk〉 is the posterior mean vector of the state θk, Σk is the posterior covriance of θk,
and S′

k is the covariance of the residual prediction error—all at time step k.

We can re-write the equations above by substituting the update steps, Eqs. (4)-(7), into the
propagation step, Eqs. (2)-(3), to get an expression for the posterior covariance and posterior
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mean of the state, Σk and θk:

Σk =
(

(

AΣk−1A
T + Q

)−1

+ CTR−1C
)

−1

〈θk〉 = Σk

(

AΣk−1A
T + Q

)−1

A 〈θk−1〉 + ΣkC
TR−1zk

(8)

2 A Weighted Outlier-Robust Kalman filter

We can take the model in Eq. (1) and introduce a scalar weight wk for each observed data
sample zk, such that the variance of zk is weighted with wk. The conditional prior distributions
for the system are then:

zk|θk, wk ∼ N

(

Cθk,
1

wk

R

)

θk|θk−1 ∼ N (Aθk−1,Q)

wk ∼ G (awk
, bwk

)

(9)

where the weights are modeled to be Gamma distributed random variables to ensure positive
values. The joint probability for the hidden and observed variables is:

p(θ1:N , z1:N ) =

N
∏

k=1

[p(θk|θk−1)p(zk|θk, wk)p(wk)] p(θ0) (10)

We then want to find the values of θ1:N , w, A, C, Q and R to maximize the log complete
evidence:

log p(θ1:N , z1:N ) =
N

∑

k=1

log p(θk|θk−1) +
N

∑

k=1

log p(zk|θk, wk) +
N

∑

k=1

log p(wk) + log p(θ0)

=
1

2

N
∑

k=1

log wk −
N

2
logR −

1

2

N
∑

k=1

wk (zk − Cθk)
T

R−1 (zk − Cθk)

−
N

2
logQ −

1

2

N
∑

k=1

(θk − Aθk−1)
T

Q−1 (θk − Aθk−1)

−
1

2
logQ0 −

1

2

(

θ0 − Aθ̂0

)T

Q−1

0

(

θ0 − Aθ̂0

)

+

N
∑

k=1

(awk,0 − 1) log wk −

N
∑

k=1

bwk,0wk + const

(11)

However, since we are assuming this model to be an online one, where at time step k, we only
have access to data points z1:k, then we only have access to the log evidence of all the data

2



points observed to date. That is to say:

log p(θ1:K , z1:K) =
K

∑

k=1

log p(θk|θk−1) +
K

∑

k=1

log p(zk|θk, wk) +
K

∑

k=1

log p(wk) + log p(θ0)

=
1

2

K
∑

k=1

log wk −
N

2
logR −

1

2

K
∑

k=1

wk (zk − Cθk)T
R−1 (zk − Cθk)

−
N

2
logQ −

1

2

K
∑

k=1

(θk − Aθk−1)
T

Q−1 (θk − Aθk−1)

−
1

2
logQ0 −

1

2

(

θ0 − θ̂0

)T

Q−1

0

(

θ0 − θ̂0

)

+

N
∑

k=1

(awk,0 − 1) log wk −

N
∑

k=1

bwk,0wk + const

(12)

We will make the factorial variational approximation over the hidden and unknown variables
so that:

Q(w, θ) =
N
∏

k=1

Q(wk)
N
∏

k=0

Q(θk). (13)

Note that the above factorization of θ only considers the influence on each wk from within its
Markov blanket, conserving the Markov property that Kalman filters, by definition, have.

We can then approximate the posteriors of Q(w), Q(θ) and determine the point-estimated
values of parameters A, C, R and Q. The final EM update equations are listed below:

E-step:

Σk =
(

Q−1

k + 〈wk〉C
T
k R−1

k Ck

)−1

(14)

〈θk〉 = Σk

(

Q−1

k Ak 〈θk−1〉 + 〈wk〉C
T
k R−1

k zk

)

(15)

〈wk〉 =
awk,0 + 1

2

bwk,0 +
〈

(zk − Ckθk)
T

R−1

k (zk − Ckθk)
〉 (16)

M-step:

Ck =
(

∑k

i=1
〈wi〉 zi 〈θi〉

T
) (

∑k

i=1
〈wi〉

〈

θiθ
T
i

〉)

−1

(17)

Ak =
(

∑k

i=1
〈θi〉 〈θi−1〉

T
) (

∑k

i=1

〈

θi−1θ
T
i−1

〉)

−1

(18)

rkm = 1

k

∑k

i=1
〈wi〉

〈

(zim − Ck(m, :)θi)
2

〉

(19)

qkn = 1

k

∑k

i=1

〈

(θin − Ak(n, :)θi−1)
2

〉

(20)

where m = 1, .., d1, n = 1, .., d2; rkm is the mth coefficient of the vector rk; qkn is the nth
coefficient of the vector qk; Ck(m, :) is the mth row of the matrix Ck; Ak(n, :) is the nth row
of the matrix Ak; and awk,0 and bwk,0 are prior scale parameters for the weight wk. (14) to
(20) should be computed once for each time step k when the data sample zk becomes available.
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We can also re-write Eqs. (14)-(15) in the standard propagation and update form:

Propagation:

θ
′

k = A 〈θk−1〉 (21)

Σ′

k = Q (22)

Update:

S′

k =

(

CΣ′

kC
T +

1

〈wk〉
R

)

−1

(23)

K ′

k = Σ′

kC
TS′

k (24)

〈θk〉 = θ
′

k + K ′

k

(

zk − Cθ
′

k

)

(25)

Σk = (I − K ′

kC)Q (26)

We can compare Eq. (8) to Eqs. (14)-(15) and note the differences. We can also re-write
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