| All downloadable documents are Adobe Acrobat PDF documents. You can obtain Acrobat for free by following the link from the Adobe Icon.
|
Date
|
Topic
|
Assignments
|
Sept. 3
| Introduction
| {0}
|
Sept. 8
| Feedback Control,
Feedforward Control,
Linear & Nonlinear Control
| {1.1} , {1.2} , {1.3}
|
Sept. 15
| Overview of Biological Motor Control
| {2.1} , {2.2} , {2.3},
|
Sept. 22
| Rigid Body Dynamics & Inverse Dynamics,
Supervised Learning for Motor Control
| {3.1}, {3.2}, web-book
|
Sept. 29
| Internal Models,
The Cerebellum for Motor Control
| {4.1}, {4.2}
|
Oct. 6
| Control in Systems with Time Delays,
Predictive Control
(Kalman Filters, Smith Predictors, Delay-Line Control)
| {5.1}, {5.2}
|
Oct. 13
| Classical Trajectory Planning,
Optimization Principles,
Reinforcement Learning
| {6.1}, {6.2}
|
Oct. 20
| Control Hypothesis from Biology:
Equilibrium Point Control, Minimum Jerk, Minimum Torque Change, Joint Interpolation
| {7.1}, {7.2}, {7.3},
{7.4}
|
Oct. 27
| Advanced Reinforcement Learning
| {8.1}, {8.2}
|
Nov. 3
| Multiple Models for Control
| {9.1}, {9.2}, {9.3}
|
Nov. 10
| no class
|
|
Nov. 17
| Movement Imitation & Learning from Demonstration
| {10.1}, {10.2}, {10.3}
|
Nov. 24
| Pattern Generators for Motor Control
| {11.1}, {11.2}, {11.3}
|
Dec. 1
| Locomotion
| {12.1}, {12.2}, {12.3}
|
Dec. 8
| Sensorimotor Transformations
Review of Course
| {13.1}, {13.2},{13.3}
|
[0]Hildreth, E. C., &
Hollerbach, J. M. (1985). The compuational approach to vision and motor
control: Massachusetts Institute of Technology, AI Memo 846. Pages 43-68.
[1.1] Hale, F. J. (1988).
Introduction to control systems analysis and design. Prentice Hall. Chapter
1.
[1.2] Martins De Carvalho,
J. L. (1993). Dynamical systems and automatic control. Prentice Hall. Chapter
1.
[1.3] An, C. H., Atkeson,
C. G., & Hollerbach, J. M. (1988). Model-based control of a robot manipulator.
Cambridge, MA: MIT Press. Pages 16-20.
[2.1] Kandel, E. R.,
Schwartz, T. M. J., & Jessel, T. M. (1991). Principles of neural sciences.
New York: Elsevier. Chapter 35.
[2.2] Kandel, E. R.,
Schwartz, T. M. J., & Jessel, T. M. (1991). Principles of neural sciences.
New York: Elsevier. Chapter 40.
[2.3] Arbib, M. A. (1989).
The metaphorical brain 2: Neural networks and beyond. New York: John Wiley.
Pages 87-118.
[3.1] Craig, J. J. (1986).
Introduction to robotics. Reading, MA: Addison-Wesley. Chapters 2.7, 2.8,
6.
[3.2] Jordan, M. I. (1996).
Computational aspects of motor control and motor learning. In H. Heuer,
& S. W. Keele (Eds.), Handbook of perception and action. New York:
Academic Press.
[4.1] Arbib, M. A.,
Érdi, P., & Szentágothai, J. (1998). Neural organization
- structure, function, and dynamics. Cambridge, Mass.
- MIT Press. Chapter
9.
[4.2] Kandel, E. R.,
Schwartz, T. M. J., & Jessel, T. M. (1991). Principles of neural sciences.
New York: Elsevier. Chapter 41.
[5.1] Miall, R. C.,
Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum
a Smith predictor? Journal of Motor Behavior, 25, 203-216.
[5.2] Maybeck, P.
S. (1990). The Kalman filter: An introduction to concepts. In I. J. Cox,
& G. T. Wilfang (Eds.), Autonomous Robot Vehicles (pp. 194-204). New
York: Springer.
[6.1] Craig, J.
J. (1986). Introduction to robotics. Reading, MA: Addison-Wesley. Chapter
7.
[6.2] Kirk, D. E.
(1970). Optimal control theory. Englewood Cliffs, New Jersey: Prentice-Hall.
[7.1] Flanagan, J. R.,
Feldman, A. G., & Ostry, D. J. (1993). Control of trajectory modifications
in target-directed reaching. Journal of Motor Behavior, 25, 140-152.
[7.2] Bizzi, E., Acornero,
N., Chapple, W., & Hogan, N. (1984). Posture control and trajectory
formation during arm movements. J. Neurosci., 4, 2738-2744.
[7.3] Flash, T., &
Hogan, N. (1985). The coordination of arm movements: An experimentally
confirmed mathematical model. Journal of Neurosience, 5, 1688-1703.
[7.4] Uno, Y., Kawato, M.,
& Suzuki, R. (1989). Formation and control of optimal trajectory in
human multijoint arm movement ? Minimum torque-change model. Biol. Cybern.,
61, 89-101.
[8.1] Kaelbling, L.
P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4, 237-285.
[8.2] Doya, K. (1996). Temporal
difference learning in continuous time and space. In D. S. Touretzky, M.
C. Mozer, & M. E. Hasselmo (Eds.), Advances in Neural Information Processing
Systems 8 (pp. 913-920). Cambridge, MA: MIT Press.
[9.1] Gomi, H., and Kawato,
M. Recognition of manipuulated objects by motor learning with modular architecture
networks. Neural Networks 6:485-497, 1993.
[9.2] Shadmehr, R.,
and Brashers-Krug, T. Functional stages in the formation of human long-term
motor memory. J Neurosci 17:409-419, 1997.
[9.3] Haruno, M., Wolpert,
D. M., and Kawato, M. Multiple paired forward-inverse models for human
motor learning and control, Advances in Neural Information Processing Systems
11. Cambridge, MA: MIT Press, 1999.
[10.1] Miyamoto, H.,
Schaal, S., Gandolfo, F., Koike, Y., Osu, R., Nakano, E., Wada, Y., and
Kawato, M. A Kendama learning robot based on bi-directional theory. Neural
Networks 9:1281-1302, 1996.
[10.2] Meltzoff, A.
N., and Moore, M. K. Infant's understanding of people and things: From
body imitation to folk psychology. In J. L. Bermúdez, A. Marcel,
and N. Eilan (Eds.), The Body and the Self. Cambridge, MA: MIT Press, pp
43-69, 1995.
[10.3] Rizzolatti,
G., Fadiga, L., Gallese, V., and Fogassi, L. Premotor cortex and the recognition
of motor actions. Cognitive Brain Research 3:131-141, 1996.
[11.1] Bullock, D., Grossberg,
S. (1989). VITE and FLETE: Neural modules for trajectory formation and
postural control. In W.A. Hershberger (Ed.), Volitional Action. Elsevier
Science Publishers.
[11.2] Matsuoka, K.
(1987). Mechanisms of frequency and pattern control in the neural rhythm
generators. Biological Cybernetics, 56, 345-353.
[11.3] | Schaal,
S., Sternad, D. (1998). "Programmable pattern generators." <i>International
Conference on Computational Intelligence in Neuroscience</i> (ICCIN'98),
Research Triangle Park, NC, Oct.24-28.
[12.1]Duysens, J. and
Van de Crommert Henry W.A.A. "Neural control of locomotion; Part 1: The
central pattern generator from cats to humans. <i>Gait and Posture</i>,
Vol. 7, pp. 131-141, 1998.
[12.2] Taga, G., Yamaguchi,
Y. and H. Shimizu. "Self-organized control of bipedal locomtion by
neural oscillators in unpredictable environment." <i> Biologidal Cybernetics</i>,
Vol. 65, pp.147-159, 1991.
[12.3] Raibert, M.,
Chepponis, M. and Brown, Benjamin JR. "Running on four legs as though
they were one." <i>IEEE Journal of Robotics and Automation,</i>Vol.
RA-2. No. 2, June 1986.
[13.1] Crowe, A.
Porrill, J. Prescott, T. "Kinematic Coordination of Reach and Balance.
" <i>Journal of Motor Behavior,</i> Vol. 30, No. 3, pp. 217-233, 1998.
[13.2] Bullock,
D., Grossberg, S., & Guenther, F. H. (1993). A self-organizing neural
model of motor equivalent reaching and tool use by a multijoint arm. Journal
of Cognitive Neuroscience, 5, 408-435..
[13.3] Copies of
transparancies of a talk on visuomotor control.